NRBO-CNN-GRU、CNN-GRU、GRU牛顿-拉夫逊优化算法+三模型光伏功率多变量时间序列预测对比

基本介绍

NRBO-CNN-GRU、CNN-GRU、GRU牛顿-拉夫逊优化算法+三模型光伏功率多变量时间序列预测对比 (Matlab2020b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.NRBO-CNN-GRU、CNN-GRU、GRU三模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出),考虑历史特征的影响。

NRBO牛顿-拉夫逊优化算法优化CNN-GRU的隐藏层节点数、初始学习率、L2正则化系数。

3.运行环境要求MATLAB版本为2020b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,中文注释清晰,质量极高。

代码主要功能
该代码实现了一个光伏功率预测,使用三种深度学习模型(GRU、CNN-GRU、NRBO-CNN-GRU)对北半球光伏数据进行时间序列预测。核心功能包括:

数据预处理:时间序列重构、数据集划分、归一化

模型构建与训练:

基础GRU模型

CNN-GRU混合模型

NRBO算法优化的CNN-GRU模型

超参数优化:使用NRBO自动优化学习率、正则化参数和GRU单元数

预测与评估:计算RMSE、MAE、MAPE、R²等指标

可视化分析:

预测结果对比曲线

损失函数变化曲线

雷达图/罗盘图等多维指标对比

误差分布可视化

算法步骤
数据准备:

导入Excel数据(北半球光伏数据.xlsx)

构建时序样本(延时步长kim=4)

按7:3划分训练集/测试集

数据归一化(mapminmax)

模型训练:

预测与评估:

反归一化预测结果

计算5种评价指标(RMSE/MAE/MAPE/R²/MSE)

多模型对比分析

可视化:

预测值 vs 真实值曲线

训练损失变化曲线

三维指标对比(雷达图/罗盘图)

误差分布柱状图

运行环境要求
MATLAB R2020b或更高版本

Deep Learning Toolbox

应用场景
光伏发电预测:

北半球地区光伏电站出力预测

电网调度与能源管理

时间序列预测:

电力负荷预测

风速/辐照度预测

金融时间序列预测

算法研究:

深度学习模型对比(GRU/CNN-GRU)

智能优化算法应用(NRBO)

超参数自动优化

创新点
混合架构:CNN特征提取 +GRU时序建模

智能优化:NRBO算法自动调参

多维评估:

多种量化指标

多种可视化方法(雷达图/罗盘图等)

工业应用:专为光伏数据设计的预处理流程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

完整代码私信回复NRBO-CNN-GRU、CNN-GRU、GRU牛顿-拉夫逊优化算法+三模型光伏功率多变量时间序列预测对比

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值