八、特征分析

一、特征值问题与特征方程

1.1 特征值问题

在这里插入图片描述
A μ = λ μ , μ ≠ 0 ( 8.1.1 ) A\mu=\lambda\mu,\quad\quad \mu\ne0\quad\quad\quad\quad(8.1.1) Aμ=λμ,μ=0(8.1.1)

在这里插入图片描述
T ( x ) = λ x ( 8.1.2 ) T(x)=\lambda x\quad\quad\quad\quad(8.1.2) T(x)=λx(8.1.2)

在这里插入图片描述

1.2 特征多项式

根据矩阵的奇异性和行列式之间的关系知,矩阵 ( A − λ I ) (A-\lambda I) (AλI)是奇异矩阵,当且仅当 d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0,即:
( A − λ I ) 奇 异    ⟺    d e t ( A − λ I ) = 0 ( 8.1.5 ) (A-\lambda I)奇异\iff det(A-\lambda I)=0\quad\quad\quad\quad\quad\quad(8.1.5) (AλI)det(AλI)=0(8.1.5)

因此,矩阵 ( A − λ I ) (A-\lambda I) (AλI)称为 A A A的特征矩阵(characteristic matrix)。当 A A A n × n n\times n n×n矩阵时,展开式 ( 8.1.5 ) (8.1.5) (8.1.5)的左端的行列式,即得到显式的 n n n次多项式方程:

α 0 + α 1 λ + ⋯ + a n − 1 λ n − 1 + ( − 1 ) n λ n = 0 ( 8.1.6 ) \alpha_0+\alpha_1\lambda+\dots+a_{n-1}\lambda^{n-1}+(-1)^n\lambda^n=0\quad\quad\quad\quad(8.1.6) α0+α1λ++an1λn1+(1)nλn=0(8.1.6)

称为矩阵 A A A的特征方程,多项式 d e t ( A − λ I ) det(A-\lambda I) det(AλI)称为特征多项式。

为了避免矩阵 A A A的特征值 λ \lambda λ计算与特征多项式求根问题之间的混淆,常在特征多项式中用 x x x代替 λ \lambda λ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、特征值与特征向量

这一节重点讨论矩阵 A A A的特征值与特征向量的有关计算及性质。

2.1 特征值

根据代数学基本定理知,即使矩阵 A A A是实的,特征方程的根也可能是复的,而且根的多重数可以是任意的,甚至可以是n重根。这些根统称矩阵A的特征值。

关于特征值,我们需要了解如下术语:
在这里插入图片描述
任何一个n阶多项式p(x)都可以写成因式分解形式:

p ( x ) = a ( x − x 1 ) ( x − x 2 ) … ( x − x n ) ( 8.2.1 ) p(x)=a(x-x_1)(x-x_2)\dots(x-x_n)\quad\quad\quad\quad(8.2.1) p(x)=a(xx1)(xx2)(xxn)(8.2.1)

注意,特征多项式 p ( x ) p(x) p(x)的n个根 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn不一定是各不相同的,也不一定就是实的。

一般说来,矩阵 A A A的特征值是各不相同的。若特征多项式存在多重根,则称矩阵 A A A具有退化特征值(degenerate engenvalue)。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 特征向量

若矩阵 A n × n A_{n\times n} An×n是一个一般的复矩阵,并且 λ \lambda λ是其特征值,则满足:

( A − λ I ) v = 0 或 A v = λ v ( 8.2.4 ) (A-\lambda I)v=0\quad或\quad Av=\lambda v\quad\quad\quad\quad(8.2.4) (AλI)v=0Av=λv(8.2.4)

的向量v称为A与特征值 λ \lambda λ对应的右特征向量,而满(足:

μ H ( A − λ I ) = 0 T 或 μ H A = λ μ H ( 8.2.5 ) \mu^H(A-\lambda I)=0^T\quad或\quad\mu^HA=\lambda\mu^H\quad\quad\quad\quad(8.2.5) μH(AλI)=0TμHA=λμH(8.2.5)

的向量 μ \mu μ称为A与特征值 λ \lambda λ对应的左特征向量。

在这里插入图片描述

这里分析下矩阵的奇异值分解与特征值分解之间的联系与区别:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 与其他矩阵函数的关系

一个矩阵的特征值与矩阵的其他标量函数有着密切的关系。这里先引出特征条件数的定义。

在这里插入图片描述
在这里插入图片描述
下面讨论一个矩阵的所有特征值的集合与该矩阵的谱分析、行列式、迹之间的关系。

与矩阵的谱分析的关系

定义8.2.2 矩阵 A ∈ C m × n A\in C^{m\times n} ACm×n的所有特征值 λ ∈ C \lambda\in C λC的集合称为矩阵 A A A的谱,记作 λ ( A ) \lambda(A) λ(A)。矩阵A的谱半径是非负实数,定义为:

ρ ( A ) = m a x ∣ λ ∣ : λ ∈ λ ( A ) ( 8.2.10 ) \rho(A)=max|\lambda|:\lambda\in\lambda(A)\quad\quad\quad\quad(8.2.10) ρ(A)=maxλ:λλ(A)(8.2.10)

由于 ρ ( A ) \rho(A) ρ(A)是包含 A A A的所有特征值在圆内或圆上的最小圆盘的半径,圆心在复平面的原点,故名谱半径。

λ ( A ) = { λ 1 , λ 2 , … , λ n } , 则 \lambda(A)=\{\lambda_1,\lambda_2,\dots,\lambda_n\},则 λ(A)={λ1,λ2,,λn}

d e t ( A ) = λ 1 λ 2 … λ n ( 8.2.11 ) det(A)=\lambda_1\lambda_2\dots\lambda_n\quad\quad\quad\quad\quad(8.2.11) det(A)=λ1λ2λn(8.2.11)

显然,若 A A A具有零特征值,则 d e t ( A ) = 0 det(A)=0 det(A)=0,则矩阵 A A A奇异。反之,若 A A A的所有特征值都不等于零,则 d e t ( A ) ≠ 0 det(A)\ne0 det(A)=0,即矩阵 A A A非奇异。

与矩阵的行列式和迹的关系

A A A是一个 n × n n\times n n×n矩阵,且 D = x I n D=xI_n D=xIn。考虑矩阵的对角展开(diagonal expansion) ∣ A + D ∣ |A+D| A+D。以 n = 3 n=3 n=3为例,则有:
在这里插入图片描述
定义:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 特征值和特征向量的性质

前面分析了特征值和特征向量一些典型的性质。事实上,一个 n × n n\times n n×n矩阵(不一定是Hermitian矩阵)A的特征值具有广泛的性质,详见下面的汇总:

  1. n × n n\times n n×n矩阵A共有n个特征值,其中,多重特征值按照其多重度计数。
  2. 若A是实对称矩阵或Hermitian矩阵,则其所有特征值都是实数
  3. 关于对角矩阵与三角矩阵的特征值:
    A = d i a g ( a 11 , a 22 , … , a n n ) A=diag(a_{11},a_{22},\dots,a_{nn}) A=diag(a11,a22,,ann),则其特征值为 a 11 , a 22 , … , a n n a_{11},a_{22},\dots,a_{nn} a11,a22,,ann
    A A A为三角矩阵,则其对角元素是所有的特征值
  4. 对一个 n × n n\times n n×n矩阵 A A A
    λ \lambda λ A A A的特征值,即 λ \lambda λ也是 A T A^T AT的特征值
    λ \lambda λ A A A的特征值,则 λ ∗ \lambda^* λ A H A^H AH的特征值
    λ \lambda λ A A A的特征值,则 λ + σ 2 \lambda+\sigma^2 λ+σ2 A + σ 2 I A+\sigma^2I A+σ2I的特征值
    λ \lambda λ是矩阵 A A A的特征值,则 1 λ \frac{1}{\lambda} λ1是逆矩阵 A − 1 A^{-1} A1的特征值
  5. 幂等函数 A 2 = A A^2=A A2=A的所有特征值取0或者1
  6. 若A是实正交矩阵,则其所有特征值为1或者-1
  7. 特征值与矩阵奇异性的关系:
    若A奇异,则它至少有一个特征值为0
    若A非奇异,则它所有的特征值为0
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    矩阵A的奇异值问题往往转化为相应矩阵的特征值问题求解。实现这一转化有两种主要方法:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 矩阵的可对角化定理

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值