对矩阵乘法的理解

1 高斯消元法与矩阵乘法

1.1 矩阵乘法:

对于:

在这里插入图片描述

它表达了两个过程:

  • 第一行不变: r 1 ′ = r 1 r_1'=r1 r1=r1
  • 第二行改变: r 2 ′ = r 2 − 3 r 1 r_2'=r_2-3r_1 r2=r23r1

用矩阵乘法可以表示为:
在这里插入图片描述

1.2 矩阵乘法与高斯消元法

利用矩阵乘法,整个高斯消元法可以表示如下:

在这里插入图片描述
所以对于方程:

( 1 2 3 3 4 5 ) \begin{pmatrix}1&2&3\\3&4&5\end{pmatrix} (132435)

我们得到了如下的答案:

( 1 0 − 1 0 1 2 ) ⟹ { x = − 1 y = 2 \begin{pmatrix}1&0&-1\\0&1&2\end{pmatrix}\Longrightarrow\begin{cases}x=-1\\y=2\end{cases} (100112){x=1y=2

2 对矩阵乘法的理解

对矩阵乘法的理解,更正确的观点是把矩阵看作函数。

2.1 矩阵是一个函数

下面是一个简单的一次函数:

a x = y ax=y ax=y

换一种方式理解:

a x + 0 y = 0 x + y ax+0y=0x+y ax+0y=0x+y

整个过程可以理解为把 ( x , 0 ) (x,0) (x,0)点映射到 ( 0 , a x ) (0,ax) (0,ax)点:

在这里插入图片描述
我们也可以通过矩阵 A x ⃗ = y ⃗ A\vec{x}=\vec{y} Ax =y 来完成这样的映射。此时,令:

A = ( 0 1 a 0 ) A=\begin{pmatrix}0&1\\a&0\end{pmatrix} A=(0a10)

此时:

A x ⃗ = ( 0 1 a 0 ) ( x 0 ) = ( 0 a x ) A\vec{x}=\begin{pmatrix}0&1\\a&0\end{pmatrix}\begin{pmatrix}x\\0\end{pmatrix}=\begin{pmatrix}0\\ax\end{pmatrix} Ax =(0a10)(x0)=(0ax)

2.2 矩阵的优点

对于:

a x = y , x ∈ R , y ∈ R ax=y,x\in R,y\in R ax=y,xR,yR

这只能完成实数到实数的映射:

x → y ⟹ R → R x\to y\Longrightarrow R\to R xyRR

但是如果我们使用矩阵 A A A

A x ⃗ = y ⃗ , x ⃗ ∈ R n , y ⃗ ∈ R m A\vec{x}=\vec{y},\vec{x}\in\mathbb{R}^n,\vec{y}\in\mathbb{R}^m Ax =y ,x Rn,y Rm

此时可以完成更广泛的映射:

x ⃗ → y ⃗ ⟹ R n → R m \vec{x}\to\vec{y}\Longrightarrow \mathbb{R}^n\to\mathbb{R}^m x y RnRm

为了完成上述的映射,矩阵 A A A此时已经不再是系数 a a a了,而是一个函数(或者说是映射)。

假设 x ⃗ \vec{x} x 所在平面为 V V V,而 y ⃗ \vec{y} y 所在平面为 W W W x ⃗ \vec{x} x 通过矩阵 A A A映射到了 y ⃗ \vec{y} y ,可以通过如下的图进行表示:

在这里插入图片描述
A A A这个映射的特殊之处是, V V V上的直线通过 A A A映射到 W W W上也是直线:

在这里插入图片描述
所以矩阵也被称为线性映射。

2.2 矩阵函数的工作方式
具体的矩阵作为例子

通过一个具体的例子来进行理解,令:

A = ( 1 − 1 1 1 ) a ⃗ = ( 1 1 ) b ⃗ = ( 0 2 ) A=\begin{pmatrix}1&-1\\1&1\end{pmatrix}\quad\quad\vec{a}=\begin{pmatrix}1\\1\end{pmatrix}\quad\quad\vec{b}=\begin{pmatrix}0\\2\end{pmatrix} A=(1111)a =(11)b =(02)

此时 a ⃗ \vec{a} a 会通过 A A A映射到 b ⃗ \vec{b} b ,用图可进行如下的表示(为了方便理解将上面的3D图变成了2D图):
在这里插入图片描述
这里 V V V W W W都是 R 2 \mathbb{R}^2 R2

a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 的基默认为各自向量空间下的自然基,其自然基为:

i ⃗ = ( 1 0 ) j ⃗ = ( 0 1 ) \vec{i}=\begin{pmatrix}1\\0\end{pmatrix}\quad\quad\vec{j}=\begin{pmatrix}0\\1\end{pmatrix} i =(10)j =(01)

所以:

a ⃗ = ( 1 1 ) = 1 i ⃗ + 1 j ⃗ b ⃗ = ( 0 2 ) = 0 i ⃗ + 2 j ⃗ \vec{a}=\begin{pmatrix}1\\1\end{pmatrix}=1\vec{i}+1\vec{j}\quad\quad\vec{b}=\begin{pmatrix}0\\2\end{pmatrix}=0\vec{i}+2\vec{j} a =(11)=1i +1j b =(02)=0i +2j

下图展示了 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 在各自向量空间的自然基下的表示:

在这里插入图片描述

工作原理

为了说清楚 A A A是怎么工作的,我们把 A A A也用一个空间表示, V V V会通过 A A A映射到 W W W

在这里插入图片描述
这里 a ⃗ \vec{a} a 的基为:

i ⃗ = ( 1 0 ) j ⃗ = ( 0 1 ) \vec{i}=\begin{pmatrix}1\\0\end{pmatrix}\quad\quad\vec{j}=\begin{pmatrix}0\\1\end{pmatrix} i =(10)j =(01)

根据矩阵乘法的规则,KaTeX parse error: Undefined control sequence: \A at position 1: \̲A̲\vec{a}=\vec{b}计算如下:
在这里插入图片描述
我们令(此时可以将 c 1 ⃗ , c 2 ⃗ \vec{c_1},\vec{c_2} c1 ,c2 看成另外一组基):
在这里插入图片描述
这样看更清晰些:

在这里插入图片描述
这也就是说, A a ⃗ A\vec{a} Aa 的机制是,坐标保持不变但基发生了变化,所以导致了位置发生变化:

在这里插入图片描述
如果我们使用自然基表示 A x ⃗ A\vec{x} Ax
在这里插入图片描述
所以整个过程就是基改变,导致向量的坐标发生变化:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值