概率论复习总结——基本概念


本博客主要用于记录概率论复习中的基础概念。

1. 概率的性质

  • 加法公式
    ①对于任意事件A,B, P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB);
    P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

理解: P(A)+P(B)导致P(AB)被多计算一次,因此需要减去一个P(AB)。P(A)+P(B)+P©导致P(ABC)被多计算两次,但P(AB), P(AC), P(BC)将P(ABC)减去三次,因此需要补上一个P(ABC)。

  • 减法公式
    ①对于任意事件A,B,有 P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB);

  • 分配律先并后交等于先交后并
    P { ( A ∪ B ) ∩ C } = P { A C ∪ B C } P\{(A \cup B )\cap C \} = P\{AC \cup BC \} P{ (AB)C}=P{ ACBC}
    P { ( A ∩ B ) ∪ C } = P { ( A ∪ C ) ∩ ( B ∪ C ) } P\{(A \cap B )\cup C \} = P\{(A \cup C) \cap (B \cup C) \} P{ (AB)C}=P{ (AC)(BC)}

2. 条件概率

  • 条件概率:事件A发生的条件下,事件B发生的概率 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB);
  • 乘法公式:若 P ( A ) > 0 P(A)>0 P(A)>0 P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A);
  • 性质
    P ( B ˉ ∣ A ) = 1 − P ( B ∣ A ) P(\bar{B}|A)=1-P(B|A) P(BˉA)=1P(BA)
    P ( B ∪ C ∣ A ) = P ( B ∣ A ) + P ( C ∣ A ) − P ( B C ∣ A ) P(B \cup C|A) = P(B|A)+P(C|A)-P(BC|A) P(BCA)=P(BA)+P(CA)P(BCA);

3. 古典概型

  • 若随机试验的样本空间 Ω \Omega Ω只有有限个样本点,且每个基本事件发生的可能性相等,则事件A发生的概率为A中所含样本点数k除以样本空间 Ω \Omega Ω所有样本点数n: P ( A ) = k n P(A)=\frac{k}{n} P(A)=nk;
    ①样本空间 Ω \Omega Ω只有有限个样本点。
    ②每个基本事件发生的可能性相等。

理解: 古典概型是通过事件样本数除以总的测试样本数以近似事件发生的概率。

4. 全概率与贝叶斯公式

  • 全概率公式 P ( A ) = ∑ i = 1 n P ( A B i ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^nP(AB_i)=\sum_{i=1}^n P(A|B_i)P(B_i) P(A)=i=1nP(ABi)=i=1nP(ABi)P(Bi)
    当事件A可以分为几种情况时,A发生的概率就是这些情况对应概率之和
  • 贝叶斯公式 P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(B_i|A)=\frac{P(B_iA)}{P(A)}=\frac{P(A|B_i)P(B_i)}{\sum_{i=1}^n P(A|B_i)P(B_i)} P(BiA)=P(A)P(BiA)=i=1nP(ABi)P(Bi)P(ABi)P(Bi)
    假设事件A可以分成几种情况,当结果A发生了,需要判断是那种情况时,要用贝叶斯公式

理解: 贝叶斯公式一般用于已知事件B_i的概率和在事件B_i发生条件下A发生的条件概率时,因为不同B_i对应发生事件A的概率不同,利用贝叶斯公式求事件B_i发生的概率。根据公式可以知道,分母就是全概率公式对于所有的事件B都相同,导致结果不同的是分子即B_i发生的概率乘以A对应的条件概率。

5. 事件的独立性

事件A, B相互独立,则:

  • P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)
  • 条件概率 P ( B ∣ A ) = P ( B ∣ A ˉ ) = P ( B ) P(B|A) = P(B|\bar{A})=P(B) P(BA)=P(BAˉ)=P(B)
  • 联合分布律 P ( X = x i , Y = y j ) = P ( X = x i ) P ( Y = y j ) P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j) P(X=xi,Y=yj)=P(X=xi)P(Y=yj)
  • 联合、边缘概率密度 f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x) f_Y(y) f(x,y)=fX(x)fY(y)
  • 数学期望 E ( X Y ) = E ( X ) E ( Y ) ; E(XY)=E(X)E(Y); E(XY)=E(X)E(Y);
  • 方差 D ( X ± Y ) = D ( X ) + D ( Y ) ; D(X \pm Y)=D(X)+D(Y); D(X±Y)=D(X)+D(Y);
  • 协方差 C o v ( X , Y ) = 0 ; Cov(X,Y)=0; Cov(X,Y)=0;

6. 离散型随机变量分布律与分布函数

  • 分布律 P ( X = x k ) = p k P(X=x_k)=p_k P(X=xk)=pk
  • 分布函数 F ( x ) = P ( X ≤ x ) = ∑ x k ≤ x p k F(x)=P(X \leq x)=\sum_{x_k \leq x} p_k F(x)=P(Xx)=xkxpk
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值