概率论总结(1)——基础概念理解

1.排列与组合

排列: 从n个人中选出k个人排成一列

组合: 从n 个人中选出k 个人,但不用排序, 即先计算从n人中选k 个人排成一列有多少中情况,然后再计算k个人中有多少中排法,相除即可

 

2. 条件概率

 全概率公式

贝叶斯公式

对贝叶斯公式的简单理解

 

对公式3,4,5 的理解,例子如下

个人理解: 即从以往数据分析得到估计值是0.95 ,即先验概率, 再进行一次测量(第一件产品是合格品),即测量值,之后再重新修正的概率0.97 ,叫后验概率。

 

3.离散型随机变量

包括概率分布函数(分布律),期望(均值),方差 \sigma ^2,标准差\sigma, 协方差 的分析

离散型随机变量

 

概率分布函数(也叫分布律)

 

 

4.连续型随机变量

包括概率分布函数,概率密度函数, 均值,期望(均值),方差 \sigma ^2,标准差\sigma, 协方差 的分析

 对于连续型随机变量,由于不能将取值一一列出,因此不能像离散型随机变量那样可以用分布律来描述它,所以我们通常不会研究它取一指定值的概率,而是研究随机变量值落在某一区间的概率

概率分布函数

 

 

概率密度函数

如上面例2 所述,

则概率密度函数为:(即将F(x) 取导数就可以得到概率密度函数)

对于连续型随机变量X 来说,它取任意指定实数值a的概率均为0, 即P{X=a} = 0 。

 

5. 期望

离散型随机变量的期望

 

连续型随机变量的期望

理解:当样本数很大时(采样次数或者试验次数很多),频率约等于概率的,如下例子

 

离散型随机变量数学期望(均值)求取

 连续型随机变量数学期望(均值)求取

 

 

6.方差

 离散型随机变量的方差

连续型随机变量的方差

 

 

7.各种常见函数分布

离散型随机变量常见三种分布

连续型随机变量的三种常见分布

期望求取

 

8.已知X的分布函数, 求Y=G(X)的分布函数

离散型随机变量

Y=G(X)的期望

 

 

9.二维随机变量(X,Y)

数学期望,方差,协方差,协方差矩阵

 

 

 

 

由于协方差是描述随机变量X 与随机变量Y 的关系, 因此至少要在二维随机变量的情况下讨论才有意义

 

其他的定理,证明和例子后面再补。。。。。。。

 

协方差矩阵

难点:

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值