1.排列与组合
排列: 从n个人中选出k个人排成一列
组合: 从n 个人中选出k 个人,但不用排序, 即先计算从n人中选k 个人排成一列有多少中情况,然后再计算k个人中有多少中排法,相除即可
2. 条件概率
全概率公式
贝叶斯公式
对贝叶斯公式的简单理解
对公式3,4,5 的理解,例子如下
个人理解: 即从以往数据分析得到估计值是0.95 ,即先验概率, 再进行一次测量(第一件产品是合格品),即测量值,之后再重新修正的概率0.97 ,叫后验概率。
3.离散型随机变量
包括概率分布函数(分布律),期望(均值),方差 ,标准差, 协方差 的分析
离散型随机变量
概率分布函数(也叫分布律)
4.连续型随机变量
包括概率分布函数,概率密度函数, 均值,期望(均值),方差 ,标准差, 协方差 的分析
对于连续型随机变量,由于不能将取值一一列出,因此不能像离散型随机变量那样可以用分布律来描述它,所以我们通常不会研究它取一指定值的概率,而是研究随机变量值落在某一区间的概率
概率分布函数
概率密度函数
如上面例2 所述,
则概率密度函数为:(即将F(x) 取导数就可以得到概率密度函数)
对于连续型随机变量X 来说,它取任意指定实数值a的概率均为0, 即P{X=a} = 0 。
5. 期望
离散型随机变量的期望
连续型随机变量的期望
理解:当样本数很大时(采样次数或者试验次数很多),频率约等于概率的,如下例子
离散型随机变量数学期望(均值)求取
连续型随机变量数学期望(均值)求取
6.方差
离散型随机变量的方差
连续型随机变量的方差
7.各种常见函数分布
离散型随机变量常见三种分布
连续型随机变量的三种常见分布
期望求取
8.已知X的分布函数, 求Y=G(X)的分布函数
离散型随机变量
Y=G(X)的期望
9.二维随机变量(X,Y)
数学期望,方差,协方差,协方差矩阵
由于协方差是描述随机变量X 与随机变量Y 的关系, 因此至少要在二维随机变量的情况下讨论才有意义
其他的定理,证明和例子后面再补。。。。。。。
协方差矩阵
难点: