深度学习中的图像数据扩增(Data Augmentations)方法总结:常用传统扩增方法及应用
1. 前言
这篇文章主要参考 A survey on Image Data Augmentation for Deep Learning, 总结了常用的传统扩增方法及其应用时的注意事项。这里的传统方法指不包括基于深度学习(比如 GAN)等新的扩增方法。
另外需要注意的是,虽然对于不同的任务,比如对于分类,检测任务,不同的任务在采用某一个具体的扩增方法的时候会有所不同,比如对于检测任务需要考虑对 bounding box 进行相应的操作,但是这里仅仅从扩增方法的角度来说是没有区别的。
最后, 数据扩增的具体方法非常多,而且除了各个训练框架提供的方法之外还有很多第三方库,这里仅仅是整理了一些比较常见的扩增方法。更多的扩增方法可以参考第三方库 imgaug, albumentations 等。
2. 数据扩增
数据扩增是对数据进行扩充的方法的总称。数据扩增可以增加训练集的样本