深度学习中的图像数据扩增(Data Augmentations)方法总结:常用传统扩增方法及应用

本文总结了深度学习中图像数据扩增的常用方法,包括几何变换(翻转、裁剪、旋转、平移、噪声注入)和颜色空间变换,探讨了它们对模型泛化能力的影响,强调了数据扩增应保持标签不变的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习中的图像数据扩增(Data Augmentations)方法总结:常用传统扩增方法及应用

1. 前言

这篇文章主要参考 A survey on Image Data Augmentation for Deep Learning, 总结了常用的传统扩增方法及其应用时的注意事项。这里的传统方法指不包括基于深度学习(比如 GAN)等新的扩增方法。

另外需要注意的是,虽然对于不同的任务,比如对于分类,检测任务,不同的任务在采用某一个具体的扩增方法的时候会有所不同,比如对于检测任务需要考虑对 bounding box 进行相应的操作,但是这里仅仅从扩增方法的角度来说是没有区别的。

最后, 数据扩增的具体方法非常多,而且除了各个训练框架提供的方法之外还有很多第三方库,这里仅仅是整理了一些比较常见的扩增方法。更多的扩增方法可以参考第三方库 imgaug, albumentations 等。

在这里插入图片描述

2. 数据扩增

数据扩增是对数据进行扩充的方法的总称。数据扩增可以增加训练集的样本

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值