3D 池化(MaxPool3D) 和 3D(Conv3d) 卷积详解

本文详细介绍了3D池化(MaxPool3D)和3D卷积(Conv3d)的概念及操作过程,通过与2D池化的对比帮助理解3D操作。内容包括MaxPool3D的计算原理,以及如何使用MaxPool2d和MaxPool1d实现MaxPool3d的功能。此外,简要提及了Conv3d与MaxPool3D的相似之处,重点在于Conv3d引入了权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3D 池化(MaxPool3D) 和 3D(Conv3d) 卷积详解

池化和卷积的过程是类似的,只是池化没有权重,相比起来更容易说明计算的过程。这里从 3D 池化开始详细介绍 MaxPool3D 和 Conv3d 的过程,并尝试通过 2D 和 1D 的池化来实现 3D 池化的过程。

3D (池化或者卷积)相比 2D 增加了一个维度,但是大致过程依然和 2D 类似,所以在看 3D 之前应该确保已经清楚 2D 的过程了,如果对 2D 不熟悉的朋友,可以参考 动图详细讲解 LeNet-5 网络结构,里面有动图演示。

3D 操作在视频处理中比较常见。通常模型的输入尺寸为 [N, C, H, W],在视频中通常会加入时间维度也就是输入多帧图像,输入尺寸为 [N, C, F, H, W],其中 F 为 帧数。

1. 3D 池化(MaxPool3D)

下面是调用 pytorch 中的 MaxPool3d,具体的 API 可以参考官方文档: torch.nn.MaxPool3d

maxpool = torch.nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 
### dsvt3D池化操作中的注意力机制类型及其工作原理 在三维卷积神经网络(3D CNNs)中,dsvt3D池化操作通常指的是结合空间时间维度上的特征提取过程。为了增强模型的表现力并聚焦于重要的时空区域,在这些架构中引入了不同的注意力机制。 一种常见的注意力机制是在通道维度上应用Squeeze-and-Excitation(SE)模块[^1]。SE模块通过学习不同通道的重要性权重来重新校准输入特征图。具体来说: - **Squeeze阶段**: 对全局平均池化的输出执行全连接层或自适应平均/最大池化以获得描述整个图像的信息向量。 - **Excitation阶段**: 使用两个连续的全连接层加上ReLU激活函数以及sigmoid门控单元生成各个通道对应的激励系数。 最终得到的加权特征图能够更有效地捕捉到对于当前任务至关重要的部分。 另一种广泛采用的方法是非局部均值(NL-means),它可以在更大范围内建立像素间依赖关系从而实现更好的上下文理解能力[^2]。该方法计算任意一对位置之间的相似度得分,并据此调整目标位置处的响应值;此过程中涉及到softmax归一化处理使得所有关联项之等于1。 此外还有基于Transformer结构设计的空间-时间多头自注意(MHSA)[^3],其允许网络关注视频序列里远距离帧间的交互模式而不局限于局部邻域内的简单聚合方式。MHSA内部包含了查询(Query)、键(Keys)与值(Values)三者之间复杂的映射逻辑,进而形成了一种强大的建模工具用于表征动态场景变化规律。 ```python import torch.nn as nn class SEBlock(nn.Module): def __init__(self, channel, reduction=16): super(SEBlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool3d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1, 1) return x * y.expand_as(x) # Example usage within a network definition se_block = SEBlock(channel=64) input_tensor = torch.randn((8, 64, 16, 224, 224)) # Batch size 8, channels 64, depth 16, height&width 224x224 output_tensor = se_block(input_tensor) ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值