HOG特征检测的原理及opencv API调用

本文介绍了Histogram of Oriented Gradients(HOG)特征检测的原理,包括预处理、梯度计算、直方图构建和归一化。在OpenCV中,通过resize()、sobel()和cartToPolar()等函数计算图像梯度,再利用block和cell结构进行特征提取。最终,通过normalize()进行L2范数归一化,得到7x15x36维的HOG特征描述子。OpenCV提供了HOGDescriptor类用于方便地调用HOG特征提取算法。
摘要由CSDN通过智能技术生成

查看了一些关于HOG特征检测的文章,觉得Histogram of Oriented Gradients这一篇文章讲的比较清楚。整理如下。


1.预处理

用于计算HOG特征的图像一般都是选择大小为64x128像素大小。

在opencv中可以直接调用resize()来完成,得到src。当然也有先裁剪在resize()的操作方式。这里也可以采用gamma correction对src进行处理,但是从Dalal和Triggs的论文可知,其作用并不是很大,所以也可以不用。

关于gamma校正可以参考伽马(Gamma)校正的原理及opencv实现



2.计算梯度图像
需要计算出src在X和Y方向的梯度图像Gx和Gy(梯度图像均为单通道图像),然后根据Gx和Gy计算出幅值和角度,这里的角度一般采用无符号表示,即0~1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值