转载 SolvePnp解析

cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, flags);
1、参数说明:
objectPoints:一个 vector<cv::Point3f>,包含了在世界坐标系中的三维点的坐标,至少需要4个点。
imagePoints:一个 vector<cv::Point2f>,包含了对应的图像上的二维点的坐标,与 objectPoints 中的点一一对应。
cameraMatrix:相机的内参数矩阵,类型为 cv::Mat,一般为 3x3 的浮点数矩阵。
distCoeffs:相机的畸变系数,类型为 cv::Mat,一般为 4x1 或 5x1 的浮点数矩阵。
rvec:输出的旋转向量,类型为 cv::Mat,是大小为 3x1 的浮点数矩阵。
tvec:输出的平移向量,类型为 cv::Mat,是大小为 3x1 的浮点数矩阵。
useExtrinsicGuess:一个布尔值,表示是否使用可选的旋转和平移向量的初始猜测。默认为 false。
flags:一个用于控制函数行为的选项标志,默认为 0。
        函数返回:

成功返回 true,失败返回 false。
2、使用说明:
objectPoints, imagePoints, cameraMatrix, distCoeffs  四个参数作为输入参数

rvec, tvec 作为输出参数

objectPoints是世界坐标系的三维坐标

imagePoints是图像上的二维点坐标

例如 使用标定好的单目相机拍摄一个矩形物体(已知相机内参&畸变系数),

objectPoints:使用量尺测量物体的左上角、右上角、左下角、右下角之间的距离,以任意一个点作为0点,建立世界坐标系,z值设为0,得到所有点的坐标则为objectPoints,保存在vector中。

imagePoints:在图像中找到物体的左上角、右上角、左下角、右下角四个点,其所有点的像素坐标为imagePoints,保存在vector中。

使用示例:

#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
 
int main() {
    std::vector<cv::Point3f> objectPoints;  // 世界坐标系中的三维点
    std::vector<cv::Point2f> imagePoints;   // 图像上的二维点
    
    // 添加 objectPoints 和 imagePoints 的数据
    
    // 创建相机内参数矩阵
    cv::Mat cameraMatrix = (cv::Mat_<double>(3,3) << fx, 0, cx, 0, fy, cy, 0, 0, 1);  
    // 创建相机畸变系数矩阵
    cv::Mat distCoeffs = (cv::Mat_<double>(1,5) << k1, k2, p1, p2, k3;
    
    //完善内参参数&畸变系数参数  
    
    cv::Mat rvec;  // 输出的旋转向量
    cv::Mat tvec;  // 输出的平移向量
    
    bool success = cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec);
    
    if (success) {
        // 获取旋转向量和平移向量的结果
        cv::Mat rotationMatrix;
        cv::Rodrigues(rvec, rotationMatrix);
 
        std::cout << "Rotation Vector:" << std::endl << rvec << std::endl;
        std::cout << "Translation Vector:" << std::endl << tvec << std::endl;
        std::cout << "Rotation Matrix:" << std::endl << rotationMatrix << std::endl;
    }
    
    return 0;
}
3、注意事项:
在使用solvePnP时,需注意objectPoints和imagePoints容器中的点坐标必须一一对应,例如只有四个点时,全部按左上角、右上角、左下角、右下角的顺序存放在容器中;如果顺序不相同,则最终输出值有误。

在笔者使用solvePnP时,拍摄物是四个定位圆,圆的像素坐标是通过opencv的SimpleBlobDetector识别的,识别以后的圆像素坐标是无序的,无法和objectPoints对应上,因此有了下述算法,

用于为四个二维坐标做冒泡排序得到左上角、右上角、左下角、右下角分别对应的点

(如果没有该需求,可以忽略此段)

int main() {
    std::vector<cv::Point2f> imagePoints; // 存放四个点的 vector
 
    // 假设已经将四个点的坐标存入 imagePoints 中
 
    // 寻找左上角、右上角、右下角和左下角对应的点
    cv::Point2f topLeft, topRight, bottomRight, bottomLeft;
    float minX = FLT_MAX, minY = FLT_MAX;
    float maxX = FLT_MIN, maxY = FLT_MIN;
 
    for (const auto& point : imagePoints) {
        if (point.x <= minX && point.y <= minY) {
            topLeft = point;
            minX = point.x;
            minY = point.y;
        }
        if (point.x >= maxX && point.y <= minY) {
            topRight = point;
            maxX = point.x;
            minY = point.y;
        }
        if (point.x >= maxX && point.y >= maxY) {
            bottomRight = point;
            maxX = point.x;
            maxY = point.y;
        }
        if (point.x <= minX && point.y >= maxY) {
            bottomLeft = point;
            minX = point.x;
            maxY = point.y;
        }
    }
 
    // 输出左上角、右上角、右下角和左下角对应的点的坐标
    std::cout << "左上角坐标: (" << topLeft.x << ", " << topLeft.y << ")" << std::endl;
    std::cout << "右上角坐标: (" << topRight.x << ", " << topRight.y << ")" << std::endl;
    std::cout << "右下角坐标: (" << bottomRight.x << ", " << bottomRight.y << ")" << std::endl;
    std::cout << "左下角坐标: (" << bottomLeft.x << ", " << bottomLeft.y << ")" << std::endl;
 
    // 新建一个vector存放四个点坐标,按照objectPoints的存放顺序进行存放
    std::vector<cv::Point2f> imagePoints2; 
    imagePoints2.push_back(topLeft);
    imagePoints2.push_back(topRight);
    imagePoints2.push_back(bottomRight);
    imagePoints2.push_back(bottomLeft);
 
    return 0;
}
4、补充
1、通过solvePnP得到旋转向量rvec和平移向量tvec后,可以计算相机到被测物中心的实际距离

#include <cmath>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
 
int main() {
    std::vector<cv::Point3f> objectPoints;  // 世界坐标系中的三维点
    std::vector<cv::Point2f> imagePoints;   // 图像上的二维点
    
    // 添加 objectPoints 和 imagePoints 的数据
    
    // 创建相机内参数矩阵
    cv::Mat cameraMatrix = (cv::Mat_<double>(3,3) << fx, 0, cx, 0, fy, cy, 0, 0, 1);  
    // 创建相机畸变系数矩阵
    cv::Mat distCoeffs = (cv::Mat_<double>(1,5) << k1, k2, p1, p2, k3;
    
    //完善内参参数&畸变系数参数  
    
    cv::Mat rvec;  // 输出的旋转向量
    cv::Mat tvec;  // 输出的平移向量
    
    bool success = cv::solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec);
    
    if (success) {
        //计算相机距离被测物的实际距离
        float distance = sqrt(tvec.at<double>(0,0) * tvec.at<double>(0,0) + tvec.at<double>(1,0) * tvec.at<double>(1,0) + tvec.at<double>(2,0) * tvec.at<double>(2,0)) / 10; 
        std::cout << "distance = "<< distance << std::endl;
    }
    
    return 0;
}
2024年6月25日补充:

2、针对solvepnp函数求得的平移向量tevc:

tevc的第三个值表示相机坐标系中相机与目标点之间的距离,这个值是相机坐标系中z轴的坐标值,即目标点相对于相机的深度。

tvec所有值平方和的开平方表示了相机与目标点之间的总体距离(实际距离)。
————————————————

                       
原文链接:https://blog.csdn.net/qq_19319481/article/details/134013308

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值