PnP 单目相机位姿估计(二):solvePnP利用二维码求解相机世界坐标

solvePnP利用二维码求解相机世界坐标
本文介绍了如何使用PnP算法解决单目相机的位姿估计问题,特别是通过解决P4P问题利用二维码的四个角点来求解相机在世界坐标系中的位置和姿态。详细讲解了输入参数的准备,包括世界坐标、像素坐标、相机内参矩阵和畸变系数,并提供了求解相机世界坐标的步骤和代码实现。


IDE:visual studio 2013
使用库:Eigen opencv2.4.9
文档版本:1.1


1.前言

  很多时候,当我们利用单目相机获取图像时,往往只能获取图像中特征物体的像素坐标。而在空间三维点计算时,我们也第一时间会想到深度相机(Kinect、Realsense等)、双目相机等。
  但是在实际中,我们亦可以通过单目相机来求得空间三维点,但这个往往有一个条件,已知特征物体的三个以上特征点参数。

在本章中,我们将使用二维码作为标志物,通过二维码四个角点,通过P4P求解相机的位姿及空间坐标。
特别说明:在本章以及未来的几篇博文中都将以右手坐标系为基准,Z轴垂直于二维码平面往里。

这里写图片描述
  
               二维码参数:长140mm,宽140mm

在求解时不一定要使用二维码,也可以用其它标志物代替,使用二维码的好处是,通过识别二维码内部的信息可以更精准的匹配以及识别,同时也能更容易的确定四个角点的顺序。
  


2.原理简介

bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int flags=ITERATIVE )

  objectPoints:特征点的世界坐标,坐标值需为float型,不能为double型,可以为mat类型,也可以直接输入vector
  imagePoints:特征点在图像中的像素坐标,可以输入mat类型,也可以直接输入vector,注意输入点的顺序要与前面的特征点的世界坐标一一对应
  cameraMatrix:相机内参矩阵
  distCoeffs:相机的畸变参数【Mat_(5, 1)】
  rvec:输出的旋转向量
  tvec:输出的平移矩阵
  最后的输入参数有三个可选项:
  CV_ITERATIVE,默认值,它通过迭代求出重投影误差最小的解作为问题的最优解。
  CV_P3P则是使用非常经典的Gao的P3P问题求解算法。 <

<think>好的,我需要回答用户关于PnP算法在计算机视觉中的实现和解释的问题。首先,我需要回忆一下PnP算法的基本概念。PnP代表Perspective-n-Point,是一种用于根据已知的3D点及其对应的2D投影来估计相机姿置和方向)的算法。常见的PnP算法包括EPnP、DLT、UPnP等。 接下来,我需要确定用户的需求。用户可能想了解PnP算法的基本原理、数学推导以及如何实现。因此,我应该先介绍PnP的定义和应用场景,比如在AR、机器人定中的应用。然后,可能需要详细解释至少一种算法,例如EPnP或DLT,包括其数学步骤,比如构建方程组、求解旋转矩阵和平移向量等。 用户提到需要符合系统级指令,比如数学表达式用$...$,独立公式用$$...$$。因此,在解释算法时,要确保所有公式的格式正确。例如,相机的投影模型可以用齐次坐标表示,写成$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$,其中$\mathbf{K}$是内参矩阵,$\mathbf{R}$和$\mathbf{t}$是旋转和平移矩阵。 然后,我需要考虑如何实现PnP算法。可能提到使用OpenCV中的solvePnP函数,并给出Python代码示例。代码需要正确展示调用方法,比如传入3D点、2D点、内参矩阵和畸变系数等参数,并解释输出结果的含义。 生成相关问题部分,需要根据PnP的常见疑问点来设计,比如如何选择不同的PnP方法、处理噪声数据、优化精度,以及与其他算法如ICP的比较等。 同时,注意引用格式。用户提供的引用[1]是关于等平面集成注入逻辑的,可能不相关,但可能在回答中提到其他引用来源,比如OpenCV文档或其他论文,需要正确标注。 最后,确保回答结构清晰,分点解释,帮助用户逐步理解,并保证信息的准确性和可靠性。检查LaTeX语法是否正确,避免格式错误,使用中文回答,保持自然流畅。</think>### PnP算法原理与实现 PnP(Perspective-n-Point)算法用于根据$n$组3D-2D点对应关系,求解相机姿置和方向)。其核心是建立相机投影模型与非线性优化框架,最小化重投影误差。 #### 1. 数学建模 相机的投影模型可表示为: $$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$ 其中: - $s$为尺度因子 - $\mathbf{K}$为内参矩阵(包含焦距$f_x, f_y$和主点$c_x, c_y$) - $\mathbf{R}, \mathbf{t}$为待求的旋转矩阵和平移向量 #### 2. 经典算法实现 **(1) DLT(直接线性变换)** 将方程展开为线性方程组: $$\begin{bmatrix} X & Y & Z & 1 & 0 & 0 & 0 & 0 & -uX & -uY & -uZ \\ 0 & 0 & 0 & 0 & X & Y & Z & 1 & -vX & -vY & -vZ \end{bmatrix} \mathbf{p} = 0$$ 通过SVD分解求解投影矩阵$\mathbf{P}$,再分解出$\mathbf{R}$和$\mathbf{t}$[^2]。 **(2) EPnP(高效PnP)** 将3D点表示为4个控制点的加权和: $$ \mathbf{p}_i = \sum_{j=1}^4 \alpha_{ij} \mathbf{c}_j $$ 建立关于控制点坐标的线性方程,通过SVD求解后恢复姿[^3]。 #### 3. OpenCV实现示例 ```python import cv2 import numpy as np # 3D物体点(单:米) obj_pts = np.array([[0,0,0], [1,0,0], [1,1,0], [0,1,0]], dtype=np.float32) # 对应2D图像点 img_pts = np.array([[100,200], [300,200], [300,400], [100,400]], dtype=np.float32) # 相机内参矩阵 K = np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]]) # 使用solvePnP求解 success, rvec, tvec = cv2.solvePnP(obj_pts, img_pts, K, None) # 将旋转向量转换为矩阵 R, _ = cv2.Rodrigues(rvec) print(f"Rotation Matrix:\n{R}\nTranslation Vector:\n{tvec}") ``` #### 4. 关键优化技术 - **RANSAC鲁棒估计**:应对特征匹配噪声 - **光束法平差(Bundle Adjustment)**:非线性优化提升精度 - **多假设验证**:结合IMU等传感器数据融合
评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值