AI大模型应用落地的痛点与策略分析

AI大模型目前正在成为企业转型升级的关键,同时,政策牵引、技术突破和转型需求等因素也驱动B端企业逐步推进了对于AI大模型的深度应用。

AIGC时代的第一波浪潮是大模型的预训练和训练集群规模的不断扩大,紧随其后,第二波浪潮接踵而至,当前和未来将更加聚焦AI大模型的应用落地。算力、网络等基础设施构筑起高效的计算和存储能力,并基于自然语言处理、算法与模型优化等底层技术保障大模型稳定运行,在此基础上,通用大模型能力逐步完善,并基于专业领域数据涌现出垂直行业和细分场景大模型。

AI大模型在B端企业的应用落地离不开数据、算力和算法的协同支撑。其中,数据作为大模型应用的基石,主要提供丰富且高质量的训练和推理素材;算力作为基础的硬件保障,保障大模型的高效训练、优化及实时推理任务;算法作为大模型应用的核心引擎,可以定义并优化大模型的计算逻辑。

**数据、算力、算法构成企业AI大模型应用落地的基础支撑
**

企业落地AI大模型应用的过程就是基于数据、算力和算法的支撑,将大模型能力赋能到业务的过程,但并不意味着拥有了数据、算力和算法,就具备了大模型应用落地的能力,企业还面临从数据到应用、从开发到上线的全面挑战。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

01

AI大模型应用落地企业的痛点

对于大部分企业来说,AI大模型应用的实际开发落地面临较高的门槛,从数据的处理到模型的微调,再到算力迁移匹配等各个环节都可能伴随着不同的挑战与痛点。

企业在大模型应用过程中面临数据处理工具不足、端到端解决方案缺乏以及数据隐私与安全难题,对企业大模型落地产生影响;而算力多元化和模型多样化,也给很多企业带来了算力迁移和适配以及模型选择的痛点;此外,大模型应用从开发到部署上线的全流程十分复杂,门槛较高,各环节间的协同不足。

AI大模型应用落地企业的痛点

02

企业落地AI大模型应用的路径与实践

结合国内外优秀案例,AI大模型落地服务厂商可以提供一站式解决方案,覆盖数据准备、模型选择、模型训练、模型定制、模型部署、应用集成、测试验证以及上线运维等各个环节。但在此之前,企业需要明确落地应用场景以及未来效果预期。

AI大模型的真正价值和投资回报率取决于企业本身如何推动AI大模型的落地,也取决于A1大模型技术的应用如何为企业带来业务层面的改变。企业应该尽快评估准备情况,制定人工智能战略与落地路线图,为生成式A1的应用奠定必要的基础,从而在中长期内通过差异化和重点战略来建立竞争优势。

企业落地AI大模型应用的路径

从现阶段市场对于企业AI大模型应用落地服务的实践来看,各类产品和解决方案各有优势也各有需要补足和提升的方面,企业需基于自身实际业务需求选择合适的解决方案。但对于企业来说,需要的更多是聚焦全流程且能力全面的解决方案,真正帮助其解决AI大模型应用开发落地过程中各环节各方面的问题。

Amazon Bedrock是一项完全托管的服务,通过单个API提供来自人工智能公司的高性能基础模型,以及通过安全性、隐私性和负责任的人工智能构建生成式人工智能应用程序所需的一系列广泛功能。使用Amazon Bedrock,开发者可以试验和评估适合业务的基础模型,通过微调和检索增强生成等技术利用企业数据对其进行私人定制,并构建使用企业系统和数据来源执行任务的代理。

使用基础模****型构建AI应用

浪潮信息元脑企智EPAI为企业AI大模型落地应用提供端到端开发平台,囊括了全链路、高可用的系列能力工具,能够帮助企业有效降低大模型应用门槛,帮助伙伴提升模型开发效能,打造智能生产力。

元脑企智EPAI支持包括CPU、GPU和各类加速卡在内的20+多元计算芯片,通过上层模型算法和下层基础设施的逻辑解耦,降低企业跨算力平台迁移、多元模型部署适配的试错成本,助力企业轻松跨越AI应用开发与部署门槛,加速智能应用创新。提供数据准备、模型训练、知识检索、应用框架等系列工具,支持调度多元算力和多模算法,帮助企业高效开发部署生成式AI应用。

元脑企智EPAI

**九号诶艾科技“荔知星云”作为整合、管理和部署AI能力的平台,起着连接底层算力和上层应用的桥梁作用,**为企业智能化提出了更加系统、灵活的解决方案。按照统一底座、统一研发、统一服务和统一管理的建设思路,“荔知星云”以大模型为核心的企业超级大脑,通过融合调控各类传统模型,实现了大小模型的协同并驱的智能化服务:

  • 智能底座层:融合异构算力、异构算法、多模数据,夯实AI技术软硬件基础设施的统一供给能力。

  • 智能研发层:以低门槛、低代码为导向,建立统一的AI工作站,打造大模型数-智-用融合的应用创建能力,满足全领域、全场景的低门槛AI研发需求。

  • 智能服务层:跨部门、跨产品共享的原子服务、组合服务、范式服务,加速人工智能场景落地。

  • 资产运营层:实现数据、算法、模型、服务、场景等智能信息的统一管理、统一运营。

九号诶艾科技“荔知星云”AI中台

03

企业未来落地AI大模型应用的趋势和策略

四大趋势:

1、企业已经感知到大模型的价值,未来将逐步关注ROI

全球75%的CIO增加了2024年的人工智能预算。然而,当谈到生成式AI时,许多组织并没有以正确的方式部署和利用它来释放其潜力。过往在小模型时代,从应用场景到赋能效果都存在清晰可参考的落地路线,然而大模型在这个方面来还没有形成标准案例。

目前,多数企业处在大模型的探索阶段,已经在场景应用上感知到大模型的应用价值。未来企业逐步关注大模型投入的ROI上,即大模型是否能真正帮助企业业务实现降本提效。根据Gartner调研,企业领导者期望到2024年大模型可以替代企业3.8%的岗位,到2026年可以替代8.2%的岗位。

2、多模态大模型应用解决多维度业务问题

在当前的应用中,大语言模型仍是主流,但世界是多模态的,多态协同更符合人类感知与表达方式。

在实际业务场景中,通过引入图片、语音、视频等数据形态,大模型可帮助企业解决更多维度的问题,多模态也是当前业界的重点发展趋势。由于多模态模型可以捕获跨模态的复杂数据关系,将融合不同信息产生更多样化的结果,参与到更深层次的任务中,因此相比单模态模型具有更广阔的应用场景,如医疗健康、交通(交通指挥,自动驾驶等)、安防监控等复杂环境。

3、将RAG与知识图谱相结合,进一步提升AI在复杂查询处理中的性能

当前面向文档类数据检索增强的方法以基于向量数据库通过文本向量化的方式为主,7月微软开源了GraphRAG成为下一个行业热门研究方向。传统的RAG存在一些局限性,如缺乏对实体间复杂关系的理解、固定数量的文本块限制等,将知识图谱引入RAG可以解决这些限制,因为知识图谱提供了一种结构化的方式来表示实体及其关系,使得系统能够:

4、智能体朝单一智能体能力扩展与多智能体协作方向发展

智能体的应用场景广泛,包括但不限于机器人、自动驾驶、智能家居等,现在各类应用中或多或少都在构建让用户去使用的智能体,未来会形成更加复杂的智能体使用情况。扩展单一智能体边界使其能够兼顾多类任务,或者构建多智能体协作机制可能是未来两大落地方向。

其中,多智能体框架开始利用层次结构,使一些智能体专注于高级目标,而其他智能体则负责特定于任务的工作,然后向上报告,从效率提升角度看,多智体系统通过智能调度、自动化流程显著提高工作效率;在创新赋能方面,通过跨领域知识融合、创新模式探索,激发行业创新活力;在生态构建层面,多智能体Al Agent能构建开放、协作的智能生态系统,推动产业链深度融合与价值共创。

策略:

在当今数字化转型的浪潮中,AI大模型的应用已成为企业提升竞争力、优化业务流程的重要手段。面对AI大模型在企业端落地的困难需要基于全流程开发底座来实现以下价值:

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值