自SecBench上线发布以来,团队持续补充高质量的评测数据,跟进新发布的大模型开展评测。SecBench技术文章现已发布在arXiv,期待与学术界和工业界的合作伙伴共创共赢,推动网络安全大模型的发展。
1 引言
在大模型时代,除了评估大模型的通用指标外,评估其在专家领域的能力也尤为重要。在网络安全领域,现有的评测数据集普遍存在两个主要问题:1. 数据量不足,2. 评测形式单一(仅通过选择题评测)。这些问题使得现有数据集是否能全面有效地评估大模型的网络安全能力存疑。
图1. SecBench多维度评测体系
为了解决这些挑战,我们提出了SecBench:一个大规模且多维度的数据集,用于全面评估大模型在安全领域的能力。SecBench从多个维度对大模型进行全面评测(见图1),包括:
● 多能力维度: 评测大模型的知识记忆(Knowledge Retention)和逻辑推理(Logical Reasoning)能力。
● 多语言维度: 包含中文和英文两种语言的评测数据。
● 多评测形式维度: 采用选择题(Multiple-Choice Question: MCQ)和问答题(Short-Answer Question: SAQ)两种题型进行立体评测。
● 多子领域维度: 涵盖安全管理、数据安全、网络与基础架构安全、安全标准与法规、应用安全、身份与访问控制、基础软硬件与技术、端点与主机安全、云安全等9个安全子领域的评测数据。
为了高效构建SecBench数据集并评测具有挑战性的问答题,我们提出了基于大模型的自动化数据标注和评测流程。每一条SecBench的数据都被准确地自动标注到其对应的评测维度。此外,通过构建自动化的问答题评测流程,SecBench能够高效地评估模型在回答问答题(SAQ)方面的能力。
SecBench包含44823道选择题和3087道问答题,从质和量两个角度极大地扩充了现有的大模型网络安全能力评测数据集。SecBench的详细介绍可以在我们的完整文章中找到(https://arxiv.org/abs/2412.20787)。为了促进领域的发展,我们也发布了SecBench的部分数据:https://secbench.org/dataset。
2 SecBench数据集构造
图2. SecBench数据构造流程
图2展示了SecBench数据集的构建过程,分为以下两步:
● 初始数据集构建: 我们从开源的高质量数据中进行清洗和收集,构建初始数据集。通过大模型(LLM)的自动标注,我们获得了10551道高质量的选择题。
● 大规模数据集构建: 为了进一步提升数据集的质量和规模,我们举办了一场面向公众的网络安全数据集构造挑战赛。通过对比赛中收集的高质量数据进行清洗和标注,我们进一步获得了34272道选择题和3087道问答题。
最终,SecBench全量数据集由以上两部分数据组成,共包含44823道选择题和3087道问答题,是目前规模最大的网络安全评测数据集。
3 SecBench数据分布
图3与图4分别表示了SecBench的选择题与问答题的数据分布情况:
图3. SecBench:44823道选择题标签分布
图4. SecBench:3087道问答题标签分布
-
知识记忆题目与逻辑推理题目分布: 多数选择题(90.8%)考察知识记忆,而较多的问答题考察逻辑推理(63.4%)。
-
九个子领域题目分布: 数据在九个子领域总体分布均匀。
-
题目考察语言分布:由于挑战赛收集的题目多为中文,所以最终的评测数据以中文居多。但考虑到整体数据的量级,我们仍然有相当足够的英文评测数据(包括近9000条选择题和100道问答题)。
4 Benchmarking实验
基于SecBench的测试数据,我们对总计16种不同的LLM进行Benchmarking。
● 选择题评测
下表展示了基于44823道选择题对多家LLM的测试结果。表中的数字表示平均正确率。特别地,腾讯混元大模型在该项测试中列位第一 (94.28%),分数明显高于包括OpenAI o1和GPT系列在内的所有其他大模型。此外,混元大模型在逻辑推理问题 (Logical Reasoning - LR) 上的表现也显著高于其他所有模型 (93.06%),展现了其在处理具有挑战的网络安全问题时的强大性能。
表1. 全量选择题Benchmarking实验结果
● 问答题评测
为了使SecBench能够自动化评测大模型解决问答题的能力,我们提出了基于Agent的自动化评分流程,如下图所示:
图5. SecBench:基于Agent的自动化问答题评测流程
首先,我们将问答题的题干输入待测大模型,使其生成答案。然后,将题干、模型生成的答案和标准答案一并输入用于打分的LLM Agent。LLM Agent基于标准答案对模型生成的答案进行评分,最终输出待测模型的评分结果用于统计。
下表展示了基于3087道问答题对多家LLM的测试结果。表中的数字表示Agent给出的评分均值。从表中可看出,不同模型在处理问答题时的表现差异远大于选择题,展示了问答题设计的挑战性。在应对具有挑战性的问答题时,擅长推理的o1-preview和o1-mini模型得到了最高的分数(89.24和87.50)。另外,混元大模型的表现(得分82.13)也优于多数的现有大模型,展现出了与GPT-4o-mini(82.49)和DeepSeek-V3(83.71)同等的强悍水平。
表2 全量问答题Benchmarking实验结果
5 总结
我们提出SecBench,大规模+多维度对大模型的网络安全能力进行评测的数据集。SecBench包含有44823道选择题和3087道问答题,从不同形式,不同考察能力,不同语言,多个子领域维度对大模型进行评测,从质与量两方面极大扩充了目前的网络安全评测数据集。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。