大家好呀,最近被一个超级火爆的AI话题刷屏了,那就是「Agent(智能体)」和「MCP(模型上下文协议)」。这两个看似高深的技术名词,其实关系到咱们未来跟AI打交道的方式,今天就用大白话给大家讲清楚这是个啥,以及为啥它们这么重要。
一、初识Agent
还记得前几天,刷到一个叫Manus的新产品,当场就被惊到了!这玩意儿简直神了,你跟它说个需求,比如"帮我把这篇论文PDF转成一个通俗易懂的PPT",它不是直接给你答案,而是像个真人助理一样,先把任务拆解成一堆小步骤,然后一步步去执行,最后真的给你整出一个完整的PPT来!
我当时就想:卧槽,这不就是传说中的AI智能体(Agent)吗?这也太强了吧!
二、什么是Agent?就是有手有脚有大脑的AI
说白了,Agent就是让AI不再只会嘴上说说,而是真的能干活的一种方式。它不仅能思考,还能使用工具,执行任务,就像是有了手脚的AI。
一个完整的Agent通常包括这几个部分:
1、 一个大脑:通常是GPT-4这样的大模型,负责思考和规划;
2、 眼睛和手:各种工具和API接口,让AI能看到信息、操作软件;
3、 工作记录本:记住之前做过什么,通常是对话历史或一个待办事项列表;
4、行为指南:告诉AI它是谁,该干什么,怎么干。
比如说,OpenAI的GPTs就是一种简单的Agent。但像Manus这样的产品,则是把这些能力整合得更加完美,甚至在GAIA(一个超难的AI能力测试)上的得分已经超过了OpenAI的DeepResearch,简直离谱!
三、MCP协议:让AI用工具像插USB一样简单
但是,要让AI真正变得有用,还有个大问题:怎么让AI轻松地使用各种工具和服务?
这就是MCP(模型上下文协议)的用武之地了!
艾力给大家打个比方:
还记得以前手机充电有多烦人吗?诺基亚一种接口,三星一种接口,苹果又是另一种…每换一个牌子的手机就得换一堆数据线。现在好了,大部分手机都用上了统一的Type-C接口,一根线走天下!
MCP就是AI世界的"Type-C接口"!
在MCP出现之前,如果想让AI使用不同的工具(比如日历、邮箱、搜索引擎),开发者需要为每个工具单独写代码,每个工具都有自己的API接口,各自为政,特别麻烦。
而有了MCP,只要按照这个统一的协议标准,AI就能像插USB一样轻松连接各种工具和服务!一次接入,终身受益。
四、MCP vs 传统API:差别大了去了
给大家列个表,看看MCP和传统API的区别:
功能 | MCP | 传统API |
---|---|---|
整合难度 | 一次标准化整合 | 每个API单独整合 |
实时双向通信 | ✅ 支持 | ❌ 不支持 |
动态发现工具 | ✅ 支持 | ❌ 不支持 |
扩展性 | 即插即用 | 需要额外开发 |
安全性与控制 | 所有工具统一标准 | 每个API单独定义 |
最关键的是,MCP支持双向通信!这意味着AI不仅能查询数据(比如看你的日历),还能主动触发操作(比如帮你发邮件或重新安排会议)。
五、MCP实际应用:太方便了吧!
给大家举几个实际例子:
- 旅行规划助手
-
用传统API:得分别为谷歌日历、邮件、机票预订写不同的代码,超级麻烦。
-
用MCP:AI助手直接通过统一协议,查看日历、订机票、发邮件确认,一气呵成!
- 智能代码编辑器
-
用传统API:手动连接文件系统、版本管理、包管理等,累死人。
-
用MCP:编辑器通过MCP一次连接所有功能,AI能更好地理解你的代码和意图。
- 数据分析助手
-
用传统API:人工管理与每个数据库、可视化工具的连接。
-
用MCP:AI自动发现并连接多个数据源,轻松完成复杂分析。
六、惊!Manus把这些都整合在一起了
回到Manus这个产品,艾力真的被它的能力震惊到了。它不仅整合了市面上所有的工具能力,还允许在虚拟机中进行异步调用,把使用场景扩展到了普通用户的办公场景中。
它的任务规划能力特别强,能把复杂任务拆解成一系列小步骤,然后一步步执行。比如艾力让它把一篇PDF论文转成科普PPT,它立刻把任务拆解成了4个大任务、15个小任务,然后有条不紊地执行。
最厉害的是,Manus在GAIA测试中的表现已经超越了OpenAI的DeepResearch,成为了评分第一的Agent产品!要知道,GAIA测试包含466个精心设计的问题,难度非常大,在2023年时最强的GPT-4在第一级测试中才勉强达到15%的成功率,而人类能达到90%
七、AI智能体时代真的来了
AI的发展速度实在太快了!从2023年初的AutoGPT(成功率很低,能干的事很少)到现在的Manus(几乎无所不能),仅仅一年多时间,进步简直惊人。
我认为,Agent的未来是星辰大海。随着MCP这样的协议标准化,以及像Manus这样的产品不断完善,我们很快就会进入一个AI真正能帮我们完成复杂任务的时代。
就像有人说的:“Manus这个所谓的超级缝合怪,在AI能用到好用的这层厚墙上,钻出了一个巨大的孔,让人们看到了后面应用广阔无垠的天地。”
虽然有人说这些产品没有技术护城河,但我想说:技术可以模仿,但用户体验是关键。Manus之所以能爆,正是因为它把各种技术整合得如此完美,创造了极佳的用户体验。而且之前不是说国外没人报道吗?现在也来了:
八、总结:AI智能体+MCP协议=未来
总结一下,Agent(智能体)让AI有了手脚和大脑,能够规划和执行复杂任务;而MCP(模型上下文协议)则让AI使用各种工具变得像插USB一样简单。两者结合,将彻底改变我们与AI交互的方式。
我相信,未来的AI不再是简单的问答机器,而是能真正理解我们需求、主动帮我们完成任务的智能助手。这不是科幻,而是怼你脸上的现实!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。