AI大模型太多,傻傻分不清?一文整理国内外主流大模型

自从2022年12月OpenAI 推出 ChatGPT 后,所有人都惊讶于它的能力,同时也关注到了其背后的大模型,于是全世界各大互联网公司都开始拼命卷模型,生怕掉队。今天各类 AI 新闻中常常会出现不同公司的模型,但由于模型类型和版本过多,我经常分不清谁是谁。于是花了点时间,将国内外主流模型做了整理,方便理解。

先放一张时间轴,方便理解不同模型之间的时间线。

图片

注:以上图表由 GPT-4o 生成。

国外大模型

OpenAI:GPT 模型

‌GPT模型是由OpenAI在2018年提出的‌。GPT的全称是Generative Pre-trained Transformer,它基于Vaswani等人在2017年提出的Transformer架构开发‌

GPT模型的核心思想是使用大量的无标注文本数据进行预训练,然后在特定任务上进行微调。这种策略在自然语言处理任务中取得了显著的成功,并在后续的GPT-2和GPT-3中得到了进一步发展和应用‌。GPT的发布为自然语言处理领域带来了重大影响,推动了预训练生成模型的研究和应用‌

图片

Anthropic:Claude 模型

‌Claude模型是由Anthropic公司的创始人Dario Amodei提出的‌。Anthropic公司由Dario Amodei在2021年1月创立,旨在解决大型语言模型中的安全问题,并专注于构建可靠、可解释和可操控的AI系统‌。

Claude模型的具体提出时间是在2024年3月4日,当时Anthropic发布了Claude 3大模型,包括Claude 3 Haiku、Claude 3 Sonnet和Claude 3 Opus三款能力逐级递增的模型‌。

图片

Meta:Llama 模型

[MetaLlama模型是由Meta AI提出的‌,并于2023年2月首次发布‌。

Llama模型的全称是Large Language Model Meta AI,直译为“大语言模型元AI”。由于“Llama”在西班牙语中意为“羊驼”,因此社区也将其昵称为羊驼系模型‌。该模型由Meta AI发布,是该系列的初代模型。随后,Meta AI又相继推出了LLama2和LLama3等升级版本‌

图片

Google:Gemini 模型

‌Gemini模型是由谷歌深度学习团队提出的,具体提出时间为2023年12月6日‌。Gemini模型是Google DeepMind(谷歌母公司Alphabet下设立的人工智能实验室)于2023年12月6日发布的一款多模态人工智能模型,能够同时识别文本、图像、音频、视频和代码五种类型的信息,并理解并生成主流编程语言的高质量代码‌

图片

国内大模型

DeepSeek

DeepSeek模型是由杭州深度求索人工智能基础技术研究有限公司(DeepSeek)提出的‌。该模型在2025年提出,具体时间可能是年初‌。

DeepSeek模型包括DeepSeek V3和DeepSeek R1。DeepSeek V3是一个大语言基座模型,而DeepSeek R1则是基于V3训练,专为复杂推理任务设计。这两个模型以卓越的性能超越或媲美了全球顶级的开源及闭源模型,并且在模型算法和工程优化方面进行了系统级创新,为在受限资源下探索通用人工智能开辟了新的道路‌

请添加图片描述

Alibaba:Qwen 模型(通义千问模型)

Qwen(通义千问) 是由 阿里云 开发并于2023年开始发布的大型语言模型(LLM)系列,旨在提供 高效、开源、可商用的大语言模型,支持 文本、代码、数学推理 等任务,并在多个基准测试中表现出色。

请添加图片描述

ByteDance:Doubao模型(豆包模型)

‌ByteDance的Doubao模型(豆包模型)是在2024年5月15日正式发布的‌。该模型由字节跳动基于云雀模型开发,提供了聊天机器人、写作助手以及英语学习助手等功能,能够回答各种问题并进行对话,帮助人们获取信息。豆包模型支持网页、Windows/macOS客户端、iOS以及安卓平台‌

请添加图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值