【科普】AI大模型的工作原理:它是如何“理解”人类语言的?

AI大模型工作原理及学习指南

引言:为什么要理解大模型的工作原理?

在当今数字化时代,AI 大模型如 ChatGPT、文心一言等已经广泛渗透到我们生活的方方面面,从智能客服、内容创作到智能医疗、金融风险预测等领域,都展现出了强大的能力。理解 AI 大模型的工作原理,对于我们更好地利用这一技术具有重要意义,具体体现在:

  1. 助力开发者优化模型:深入了解其原理能帮助开发者优化模型性能,开发出更高效、更智能的应用。
  2. 提升用户交互体验:对于普通用户而言,知晓其背后的运作机制,可以更好地与模型交互,提出更精准的需求,从而获得更满意的服务。
  3. 应对伦理安全问题:随着 AI 技术的不断发展,伦理和安全问题也日益凸显,理解大模型工作原理有助于我们评估和应对潜在风险。

第一章:大模型是怎么来的?

1.1 何为大模型?

大模型(Large Language Model,简称LLM) 属于人工智能模型的一种,它以神经网络为基础,包含亿级别的参数,主要用于训练以实现对自然语言的理解和生成。

  • 本质:一台“能够预测下一个词语”的概率设备
  • 目标:尽可能深入理解上下文,并产出符合逻辑的语言内容

1.2 大模型与传统AI的差异何在?

特性传统AI模型大模型(LLM)
数据规模千万级别万亿级别
参数数量万到百万级别百亿到万亿级别
功能表现仅能处理单一任务具备多任务泛化能力
训练模式手动提取特征+监督学习自监督预训练+微调

1.3 大模型的发展历程

大模型的发展并非一蹴而就,而是经历了多个阶段:

请添加图片描述

1. 早期阶段:人工智能主要聚焦于符号主义和专家系统,通过人工编写规则来让计算机完成特定任务。

2. 机器学习阶段:决策树、支持向量机等算法得到广泛应用,但这些模型在处理复杂任务时能力有限。

3. 深度学习奠基:深度神经网络通过构建多层非线性变换,能够自动从数据中学习特征,为大模型的发展奠定了基础。

4. Transformer 架构突破(2017 年):谷歌提出的 Transformer 架构成为重要里程碑,其基于自注意力机制,能够有效地处理长序列数据,捕捉长距离依赖关系,大大提高了模型的性能。此后,基于该架构的大模型不断涌现。

5. 代表性模型

  • OpenAI 的 GPT 系列:从 GPT-1 到 GPT-4,参数规模不断扩大,性能不断提升,在自然语言处理领域取得了巨大成功。
  • 谷歌的 BERT:在预训练 - 微调范式上做出了重要贡献,推动了大模型在多种下游任务中的应用。
  • 国内模型:百度的文心一言、字节跳动的云雀模型等国内科技企业研发的模型,都在不同领域展现出了强大的实力。

第二章:AI大模型的核心结构——Transformer

2.1 什么是 Transformer?

Transformer 是一种基于自注意力机制的深度学习架构,它在 2017 年由 Google 提出,被广泛应用于大模型中,彻底改变了自然语言处理等领域。其核心架构与工作流程如下:

  1. 架构组成:Transformer 主要分为编码器和解码器两大部分。
  2. 编码器功能:在处理自然语言任务时,编码器负责将输入的文本序列转化为一系列的特征向量,这些向量包含了文本的语义信息。
  3. 解码器功能:解码器基于编码器输出的特征向量,生成目标文本序列,例如在机器翻译任务中,将一种语言翻译成另一种语言。

2.2 自注意力机制怎么理解?

自注意力机制是 Transformer 的核心创新点之一,具体如下:

  1. 向量生成:在处理输入序列中的每个元素时,模型通过线性变换生成三个向量:查询(Query)、键(Key)和值(Value)。
  2. 权重计算:计算查询向量与所有键向量的点积相似度,并经过归一化处理,得到每个元素相对于其他元素的注意力权重,这些权重反映输入序列中各个元素之间的相关性。
  3. 输出生成:根据上述权重对值向量进行加权求和,得到该元素的自注意力输出。例如在句子 “我喜欢吃苹果” 中,模型处理 “吃” 这个词时,会关注到 “我”(动作的执行者)和 “苹果”(动作的对象),更好地理解 “吃” 在句子中的含义。
  4. 机制优势:自注意力机制能够有效捕捉长距离依赖关系,解决传统循环神经网络在处理长序列时容易出现的梯度消失和梯度爆炸问题。

2.3 位置编码解决了什么问题?

在自然语言处理中,单词在句子中的位置信息非常重要,具体如下:

  1. 自注意力机制的局限性:自注意力机制本身不具备对位置信息的感知能力,它平等地对待输入序列中的每个元素,无法区分相同单词在不同位置的差异。
  2. 位置编码的引入:为解决上述问题,Transformer 引入了位置编码。其作用是为输入序列中的每个位置赋予一个唯一的编码,让模型能够学习到单词的位置信息。
  3. 位置编码的实现:通常,位置编码是通过三角函数计算得到,不同位置的编码在向量空间中具有不同的表示。这些位置编码与经过嵌入层的单词向量相加,再输入到后续的神经网络层。
  4. 位置编码的效果:通过这种方式,模型在处理输入时,不仅能考虑单词本身的语义信息,还能结合其位置信息,更准确地理解句子的含义。例如,在句子 “苹果在桌子上” 和 “桌子在苹果上” 中,虽然单词相同,但位置不同,通过位置编码,模型能够区分这两个句子的不同语义。

第三章:训练过程是怎样的?

3.1 数据收集与预处理

大模型的训练首先需要海量的数据,具体流程如下:

1. 数据收集:数据来源广泛,涵盖互联网上的文本、书籍、论文、社交媒体内容等。在自然语言处理大模型中,数据收集主要围绕文本数据展开。

2. 数据预处理:这一步骤至关重要,具体包括:

  • 去除噪声数据:如乱码、格式错误的文本;
  • 文本清洗:去除无关的符号、停用词等;
  • 分词处理:将连续的文本分割成一个个单词或词元(Token)。对于中文文本,分词方式有基于词典的分词、基于统计模型的分词等;在英文文本中,通常以空格作为单词的分隔。

3. 数据向量化表示:将每个单词或词元转换为数值向量,以便模型能够处理。常见的向量化方法有独热编码、词嵌入(如 Word2Vec、GloVe 等),而在大模型中,一般会采用更复杂的基于 Transformer 架构的嵌入方式,如 BERT 的词嵌入。

3.2 预训练(Pre-training):学习通用知识

预训练是大模型训练的关键阶段,采用无监督学习方法,在大规模无标签数据上进行训练。以语言模型为例,其预训练目标是学习语言通用模式和语义信息,常见预训练任务如下:

1. 掩码语言模型任务(Masked Language Model,MLM):

  • 模型会随机将输入文本中的部分单词替换为掩码标记(如[MASK])。
  • 例如,对于句子 “我喜欢[MASK]水果”,模型需依据 “我喜欢” 和 “水果” 等上下文信息,预测被掩码单词,如 “吃”“买” 等。
  • 通过大量训练,模型可学习单词间语义关系与语言语法结构。

2. 下一句预测任务(Next Sentence Prediction,NSP) :

  • 给定两个句子,让模型判断第二个句子是否为第一个句子的下一句。
  • 以此使模型学习句子之间的逻辑关系。

经过预训练,模型能够具备一定的语言理解和生成能力。

3.3 微调(Fine-tuning) :适应特定任务

大模型预训练后是“通才”,还需微调成“专才”。

常用微调方式:

  • 监督微调(SFT):根据真实问答对训练
  • RLHF(人类反馈强化学习):强化良好行为
  • LoRA / P-tuning:轻量微调,参数少但效果好

3.4 模型的“损失函数”在干什么?

损失函数就是“评分标准”——模型每次预测错了多少。

  • 常见的是交叉熵损失(Cross Entropy)
  • 目标是让每个Token的预测概率尽可能接近真实值

第四章:它是怎么理解我们的语言的?

4.1 词向量与语义表示

当我们向大模型输入一段文本时,模型首先会将文本中的每个单词转换为词向量,具体如下:

  1. 词向量本质:词向量是一种低维的实数向量,能够将单词的语义信息编码其中。在大模型中,词向量的生成方式与模型的架构相关,通常基于 Transformer 的嵌入层。
  2. 语义相似度体现:词向量在向量空间中的位置关系反映了单词之间的语义相似度。例如,“汽车” 和 “卡车” 这两个词的词向量在向量空间中距离较近,因为它们在语义上都属于交通工具类别。
  3. 知识融入与应用:模型通过在大规模文本上的预训练,学习到丰富的语义知识,并将这些知识融入到词向量的表示中。处理句子时,模型会综合考虑句子中各个单词的词向量,以及它们之间的相互关系,来构建对整个句子语义的理解。这种方式使得模型能够捕捉到语言中的语义关联,即便遇到一些未曾见过的单词组合,也能根据词向量之间的关系进行一定程度的理解和推理。

4.2 上下文理解:基于注意力机制

除了词向量,大模型理解语言的另一个关键在于对上下文的理解,Transformer 架构中的自注意力机制发挥重要作用,具体表现为:

  1. 注意力权重计算:当模型处理一个单词时,它会通过自注意力机制,计算该单词与句子中其他单词的注意力权重,从而动态地关注与当前单词相关的上下文信息。例如,在句子 “小明告诉小红,他的书丢了” 中,对于 “他” 这个代词,模型通过自注意力机制,会关注到 “小明” 和 “小红”,根据上下文信息判断 “他” 指代的是谁。
  2. 长距离依赖捕捉:注意力机制使得模型能够在处理长文本时,有效地捕捉到长距离的依赖关系,理解句子中各个部分之间的逻辑联系。
  3. 文本完整理解构建:通过多层的自注意力机制和前馈神经网络的层层处理,模型能够逐渐构建起对整个文本的完整理解,从局部的单词语义到全局的文本主题,从而实现对人类语言的准确理解。

4.3 知识推理与逻辑判断

随着模型规模的增大和训练数据的丰富,大模型逐渐具备了一定的知识推理和逻辑判断能力,具体过程如下:

  1. 推理判断基础:模型在预训练过程中,学习到了大量的事实性知识和语言模式,这些知识成为了它进行推理和判断的基础。
  2. 简单推理示例:当被问到 “苹果是水果吗?” 这样的问题时,模型通过对 “苹果” 和 “水果” 在语义上的理解,以及在训练数据中学习到的关于水果类别的知识,能够判断出苹果属于水果范畴,并给出肯定的回答。
  3. 复杂任务处理:在一些更复杂的逻辑推理任务中,如数学问题求解、逻辑谜题解答等,模型能够通过对问题的理解,将其分解为多个步骤,利用已有的知识和推理能力逐步推导得出答案。虽然大模型的知识推理和逻辑判断能力还存在一定的局限性,但在很多领域已经能够为用户提供有价值的帮助。

第五章:部署与运行逻辑

5.1 模型运行需要哪些资源?

AI 大模型的运行需要大量的资源支持,具体如下:

  1. 计算资源:由于大模型参数规模庞大,推理过程需进行大量矩阵运算,对硬件计算能力要求极高。通常需使用高性能的图形处理单元(GPU)或专门的人工智能加速芯片(如 TPU)。例如,GPT-4 这样的超大规模模型,其推理过程需要数千块 GPU 协同工作才能实现实时响应。
  2. 内存资源:模型运行时需要加载大量的参数和中间计算结果,要求计算机具备足够大的内存。
  3. 存储资源:用于存储模型的参数文件、输入数据和输出结果等。
  4. 电力供应:需要稳定的电力供应,以保证硬件设备的持续运行。
  5. 散热系统:良好的散热系统必不可少,可防止硬件因长时间高负载运行产生过热问题,影响性能和稳定性。

5.2 企业部署的三种方式

模式优势代表公司
公有云快速接入、低门槛OpenAI、百度、阿里
私有部署数据安全、定制化华为云、科大讯飞等
混合部署灵活兼容、成本均衡各类SaaS厂商

第六章:产业链与市场格局

6.1 上游:芯片 + 基础设施

  • 芯片:英伟达H100、AMD MI300、寒武纪 MLU、壁仞 BR100
  • 基础设施:液冷数据中心、万卡集群、智算中心建设

6.2 中游:模型研发与框架工具

  • 模型开发公司:OpenAI、百度、阿里、智谱AI、DeepSeek
  • 框架工具:PyTorch、TensorFlow、PaddlePaddle、Transformers

6.3 下游:AI原生应用与集成商

  • AI助手、教育、金融、医疗、政务、内容生成平台
  • AI中台集成厂商(字节、腾讯云、京东云)

第七章:普通人怎么使用大模型?

普通人使用大模型可从选择模型入手,通过优化提示词来获得更精准的回答,还可借助外部工具来拓展大模型的应用场景。具体方法如下:

  • 选择合适的大模型:市面上大模型众多,如ChatGPT、文心一言、通义千问、豆包等。可根据自身需求和使用场景选择,若只是日常聊天、简单文案创作,许多免费的国内大模型就能满足需求;若对某些专业领域有较高要求,可尝试一些在该领域表现较好的模型,如豆包在知识问答、代码生成等方面有不错表现。
  • 明确任务目标:使用大模型前,要清晰界定任务需求。例如撰写新闻稿需明确主题、受众、字数等,让模型清楚知道要生成什么样的内容,避免生成的内容偏离方向。
  • 优化提示词:依据大模型的能力和特点,使用详细、具体的提示词来引导模型输出更符合要求的内容。比如想让大模型生成小红书文案,可在提示词中说明目标受众、语气、文章结构等。还可设计一系列提示词模板,方便每次调用。
  • 使用外部知识库:通过检索增强生成(RAG)技术,让大模型从外部知识库中查找相关信息来更准确地回答问题。可直接在一些AI机器人聊天页面上传文档后开启对话,如使用Kimi解读论文。也可借助一些RAG工具,让模型具备特定领域的知识,提升回答的准确性。
  • 多模型对比验证:对于关键任务,可将同一问题输入多个大模型,对比结果并综合分析。例如在翻译重要文件时,可结合GPT-4的准确性和文心一言对专业术语的理解,以提高翻译质量。
  • 结果二次加工:大模型生成的结果通常可作为基础,用户需根据实际需求进行校对、润色与完善。如生成的营销文案,还需结合品牌风格与市场反馈进一步优化,使其更符合实际应用场景。
  • 学习借鉴他人经验:可以寻找那些已经借助大模型在垂直领域取得成果的人,向他们请教经验,模仿他们的做法。也可以在网上搜索相关的教程、博客、论坛帖子等,学习别人的使用技巧和方法。

第八章 : 如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值