大模型如何部署-LMDeploy

本文探讨了大模型部署在人工智能中的关键作用,涉及服务器端和移动端的部署场景,强调了大模型面临的计算量巨大问题,特别是BatchSize的概念和其对内存效率的影响,以及大模型对内存的需求,如20B模型的内存开销和KV缓存的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1.大模型部署的背景

模型部署的概念:软件中将开发完毕的软件投入使用的过程。

在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是讲训练好的的深度学习模型在特定环境运行的过程。

使用场景:服务器端 GPU部署,单GPU/TPU.NPU部署,多卡、集群部署

移动端/边缘端:移动机器人,手机等等

 大模型面临的挑战大计算,大,计算量巨大,根据internLM2技术报告,提供的模型参数数据,以及OpenAI团队提供的计算估算方法,20B的模型每生成一个token,要进行406亿次浮点运算,因此计算,若生成128个token,就要进行5.2万亿次运算

20B算是大模型里的“小”模型,若模型参数规模达到175B(GPT-3),Batch-Size (BS)再增大一点,每次推理计算将达到千万亿量级。

含义Batch Size定义:一次训练所选取的样本数

为什么要提出Batch Size?

在没有使用Batch Size之前,网络在训练时,是一次把所有的数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值