大模型如何部署-LMDeploy

本文探讨了大模型部署在人工智能中的关键作用,涉及服务器端和移动端的部署场景,强调了大模型面临的计算量巨大问题,特别是BatchSize的概念和其对内存效率的影响,以及大模型对内存的需求,如20B模型的内存开销和KV缓存的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1.大模型部署的背景

模型部署的概念:软件中将开发完毕的软件投入使用的过程。

在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是讲训练好的的深度学习模型在特定环境运行的过程。

使用场景:服务器端 GPU部署,单GPU/TPU.NPU部署,多卡、集群部署

移动端/边缘端:移动机器人,手机等等

 大模型面临的挑战大计算,大,计算量巨大,根据internLM2技术报告,提供的模型参数数据,以及OpenAI团队提供的计算估算方法,20B的模型每生成一个token,要进行406亿次浮点运算,因此计算,若生成128个token,就要进行5.2万亿次运算

20B算是大模型里的“小”模型,若模型参数规模达到175B(GPT-3),Batch-Size (BS)再增大一点,每次推理计算将达到千万亿量级。

含义Batch Size定义:一次训练所选取的样本数

为什么要提出Batch Size?

在没有使用Batch Size之前,网络在训练时,是一次把所有的数

### 使用 `lmdeploy` 部署 DeepSeek 模型蒸馏 #### 安装依赖库 为了成功部署 DeepSeek 模型并执行模型蒸馏,首先需要安装必要的 Python 库和其他环境配置。这通常涉及设置 GPU 支持、CUDA 和 cuDNN 的版本匹配等。 ```bash pip install -r requirements.txt ``` 确保环境中已正确安装 PyTorch 及其对应的 CUDA 版本[^1]。 #### 下载预训练模型权重 DeepSeek-V3 已经开放了 Hugging Face 平台上的模型权重,可以直接通过官方文档获取详细的下载指导和链接。这对于准备用于蒸馏的学生模型至关重要[^2]。 #### 准备数据集 模型蒸馏过程中,高质量的数据集不可或缺。应当收集或创建一个适合目标任务的标注数据集。该数据集不仅应覆盖广泛的应用场景,还应该具有足够的多样性来帮助学生模型更好地学习教师模型的知识。 #### 编写蒸馏脚本 编写专门针对 DeepSeek 架构设计的蒸馏算法实现代码。此部分可能涉及到定义损失函数(如 KL 散度)、调整超参数以及监控训练过程中的性能指标变化情况。 ```python import torch.nn as nn from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments teacher_model = AutoModelForSequenceClassification.from_pretrained('path_to_teacher') student_model = AutoModelForSequenceClassification.from_pretrained('path_to_student') class DistillationLoss(nn.Module): def __init__(self, temperature=2.0): super().__init__() self.temperature = temperature def forward(self, student_logits, teacher_logits): loss_fn = nn.KLDivLoss(reduction="batchmean") return loss_fn( nn.functional.log_softmax(student_logits / self.temperature, dim=-1), nn.functional.softmax(teacher_logits / self.temperature, dim=-1) ) training_args = TrainingArguments(output_dir="./results", num_train_epochs=3) trainer = Trainer( model=student_model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, compute_metrics=lambda p: {"accuracy": (p.predictions.argmax(-1) == p.label_ids).mean()}, custom_loss_function=DistillationLoss() ) trainer.train() ``` #### 执行部署流程 完成上述准备工作之后,可以按照 `lmdeploy` 文档说明启动实际的服务端口监听和服务接口暴露工作。注意检查日志输出确认服务状态正常运行,并测试几个样例输入验证推理结果准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值