1.大模型部署的背景
模型部署的概念:软件中将开发完毕的软件投入使用的过程。
在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是讲训练好的的深度学习模型在特定环境运行的过程。
使用场景:服务器端 GPU部署,单GPU/TPU.NPU部署,多卡、集群部署
移动端/边缘端:移动机器人,手机等等
大模型面临的挑战大计算,大,计算量巨大,根据internLM2技术报告,提供的模型参数数据,以及OpenAI团队提供的计算估算方法,20B的模型每生成一个token,要进行406亿次浮点运算,因此计算,若生成128个token,就要进行5.2万亿次运算
20B算是大模型里的“小”模型,若模型参数规模达到175B(GPT-3),Batch-Size (BS)再增大一点,每次推理计算将达到千万亿量级。
含义Batch Size定义:一次训练所选取的样本数
为什么要提出Batch Size?
在没有使用Batch Size之前,网络在训练时,是一次把所有的数