租房子事项

找房主 (公司附近小区) 也可以粘贴 求租小广告

 

人要少 最好1~2室(即使隔断之后)的  不能超过4个人

 

床要舒服 翻身不是很响

 

房租内要包含取暖 卫生 物业费

 

要能立刻上网

 

隔音要好

 

厨房 卫生间不要太潮湿阴暗

 

卫生间 热水器要好

 

要阳面的

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
### 租房数据分析方法、工具和技术 #### 数据分析方法 数据分析通常分为描述性分析、探索性分析和推断性分析。对于租房数据,可以采用以下几种具体的方法来完成分析任务: 1. **统计描述** 使用基本的统计量(如均值、中位数、标准差等)对租金价格、房屋面积、地理位置等因素进行初步了解[^1]。 2. **分布分析** 对于连续型变量(如租金),可以通过直方图或密度曲线观察其分布情况;而对于离散型变量(如区域名称),则可利用频次表或饼状图展示各分类的比例构成。 3. **关联关系挖掘** 利用皮尔逊相关系数矩阵或者热力图找出不同字段之间的相互影响程度,比如房租与房间大小之间是否存在正向线性联系等问题。 4. **聚类分组研究** 应用K-means算法把相似属性的房子归为一类群体以便更好地理解市场结构特征以及潜在客户偏好模式。 5. **预测建模尝试** 建立回归模型估计未来可能发生的趋势变化规律,帮助决策者制定更合理的策略方案。 #### 所需工具及技术实现细节 为了高效地开展上述各项活动,在实际操作过程中需要用到一些特定软件包及其功能特性如下所示: - **Pandas**: 主要负责数据加载、清洗转换等工作流程中的核心环节。例如通过`read_csv()`函数可以从本地磁盘读入CSV格式文件作为DataFrame对象存储起来便于后续处理。 ```python import pandas as pd df = pd.read_csv('ganji_rent1.csv') # 加载数据 ``` - **Matplotlib & Seaborn**: 提供丰富的绘图接口支持制作高质量图形作品满足可视化需求。像柱状图、折线图甚至是三维立体效果图都能轻松搞定。 ```python import matplotlib.pyplot as plt plt.figure(figsize=(8,6)) df['price'].hist(bins=50) plt.title('Rent Price Distribution') plt.xlabel('Price (RMB)') plt.ylabel('Frequency') plt.show() ``` - **Scikit-Learn**: 集成了众多机器学习算法可供调用构建智能化解决方案框架体系。无论是无监督还是有监督场景下均有对应模块可用作技术支持。 ```python from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=5).fit(df[['area', 'price']]) labels = kmeans.labels_ ``` #### 注意事项 当获取外部网络资源时务必遵循相应法律法规规定并尊重原作者权益保护措施[^2]。另外还需注意的是原始采集到的信息可能存在缺失值或是异常点等情况发生因此前期准备工作显得尤为重要不可忽视任何细微之处以免造成最终结论偏差失真现象出现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值