1. 基于Taylor公式的数值微分公式
f
′
(
x
)
≈
f
(
x
+
h
)
−
f
(
x
)
h
,
截断误差
−
f
′
′
(
ξ
)
2
h
f'(x)\approx \frac{f(x+h)-f(x)}{h}\,\,,\,\, 截断误差 \,\,\, - \frac{f''(\xi)}{2}h
f′(x)≈hf(x+h)−f(x),截断误差−2f′′(ξ)h
f
′
(
x
)
≈
f
(
x
)
−
f
(
x
−
h
)
h
,
截断误差
−
f
′
′
(
ξ
)
2
h
f'(x)\approx \frac{f(x)-f(x-h)}{h}\,\,,\,\, 截断误差 \,\,\, - \frac{f''(\xi)}{2}h
f′(x)≈hf(x)−f(x−h),截断误差−2f′′(ξ)h
f
′
(
x
)
≈
f
(
x
+
h
)
−
f
(
x
−
h
)
2
h
,
截断误差
f
′
′
′
(
ξ
)
6
h
2
f'(x)\approx \frac{f(x+h)-f(x-h)}{2h}\,\,,\,\, 截断误差 \,\,\, \frac{f'''(\xi)}{6}h^2
f′(x)≈2hf(x+h)−f(x−h),截断误差6f′′′(ξ)h2
f
′
′
(
x
)
=
f
(
x
+
h
)
−
2
f
(
x
)
+
f
(
x
−
h
)
h
2
,
截断误差
−
f
(
4
)
(
ξ
)
12
h
3
f''(x)= \frac{f(x+h)-2f(x)+f(x-h)}{h^2} \,\,,\,\, 截断误差 \,\,\, -\frac{f^{(4)}(\xi)}{12}h^3
f′′(x)=h2f(x+h)−2f(x)+f(x−h),截断误差−12f(4)(ξ)h3
2. 基于插值的数值微分公式
由于拉格朗日插值
f
(
x
)
=
L
n
(
x
)
+
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
ω
n
+
1
(
x
)
,
ξ
∈
(
a
,
b
)
f(x)=L_n(x)+ \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) \,\,,\,\, \xi\in(a,b)
f(x)=Ln(x)+(n+1)!f(n+1)(ξ)ωn+1(x),ξ∈(a,b)
ω
n
+
1
(
x
)
=
∏
i
=
0
n
(
x
−
x
i
)
\omega_{n+1}(x)= \prod_{i=0}^{ n} (x-x_i)
ωn+1(x)=i=0∏n(x−xi)
∴
f
′
(
x
)
=
L
n
′
(
x
)
+
1
(
n
+
1
)
!
(
f
(
n
+
1
)
(
ξ
)
′
ω
n
+
1
(
x
)
+
f
(
n
+
1
)
(
ξ
)
ω
n
+
1
′
(
x
)
)
\therefore f'(x)=L'_n(x)+ \frac{1}{(n+1)!} \bigg( f^{(n+1)}(\xi)' \omega_{n+1}(x)+f^{(n+1)}(\xi)\omega'_{n+1}(x) \bigg)
∴f′(x)=Ln′(x)+(n+1)!1(f(n+1)(ξ)′ωn+1(x)+f(n+1)(ξ)ωn+1′(x))
f
′
(
x
k
)
=
L
n
′
(
x
k
)
+
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
∏
i
=
0
,
i
≠
k
n
(
x
k
−
x
i
)
f'(x_k)=L_n'(x_k)+ \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0,i\ne k}^{ n} (x_k-x_i)
f′(xk)=Ln′(xk)+(n+1)!f(n+1)(ξ)i=0,i=k∏n(xk−xi)
用插值多项式的导数来近似替代原函数的导数。
基于拉格朗日插值的求导方法并不是步长越小精度越好,缺点是只能求出节点处的导数
2.1 两点公式
L
1
′
(
x
)
=
(
x
−
x
1
x
0
−
x
1
)
′
f
0
+
(
x
−
x
0
x
1
−
x
0
)
′
f
1
=
−
1
h
f
0
+
1
h
f
1
=
f
1
−
f
0
h
\begin{align*} L_1'(x)=& (\frac{x-x_1}{x_0-x_1})'f_0+ (\frac{x-x_0}{x_1-x_0})'f_1 \\ \\ =&- \frac{1}{h}f_0+ \frac{1}{h}f_1= \frac{f_1-f_0}{h} \end{align*}
L1′(x)==(x0−x1x−x1)′f0+(x1−x0x−x0)′f1−h1f0+h1f1=hf1−f0
f
′
(
x
0
)
≈
1
h
(
f
1
−
f
0
)
f'(x_0)\approx \frac{1}{h}(f_1-f_0)
f′(x0)≈h1(f1−f0)
f
′
(
x
1
)
≈
1
h
(
f
1
−
f
0
)
f'(x_1)\approx \frac{1}{h}(f_1-f_0)
f′(x1)≈h1(f1−f0)
截断误差 − f ′ ′ ( ξ ) 2 h 截断误差 \,\,\, - \frac{f''(\xi)}{2}h 截断误差−2f′′(ξ)h
2.2 三点公式
f
′
(
x
0
)
≈
1
2
h
(
−
3
f
0
+
4
f
1
−
f
2
)
,
截断误差
−
f
′
′
′
(
ξ
)
3
h
2
f'(x_0)\approx \frac{1}{2h}(-3f_0+4f_1-f_2) \,\,,\,\, 截断误差- \frac{f'''(\xi)}{3}h^2
f′(x0)≈2h1(−3f0+4f1−f2),截断误差−3f′′′(ξ)h2
f
′
(
x
1
)
≈
1
2
h
(
−
f
0
+
f
2
)
,
截断误差
−
f
′
′
′
(
ξ
)
6
h
2
,
常用的中心差商公式
f'(x_1)\approx \frac{1}{2h}(-f_0+f_2) \,\,,\,\, 截断误差- \frac{f'''(\xi)}{6}h^2 \,\,,\,\, 常用的中心差商公式
f′(x1)≈2h1(−f0+f2),截断误差−6f′′′(ξ)h2,常用的中心差商公式
f
′
(
x
2
)
≈
1
2
h
(
f
0
−
4
f
1
+
3
f
2
)
,
截断误差
−
f
′
′
′
(
ξ
)
3
h
2
f'(x_2)\approx \frac{1}{2h}(f_0-4f_1+3f_2) \,\,,\,\, 截断误差- \frac{f'''(\xi)}{3}h^2
f′(x2)≈2h1(f0−4f1+3f2),截断误差−3f′′′(ξ)h2
2.3 五点公式
f ′ ( x 2 ) = 1 12 h ( f 0 − 8 f 1 + 8 f 3 − f 4 ) , 截断误差 − h 4 30 f ( 5 ) ( ξ ) f'(x_2)= \frac{1}{12h}(f_0-8f_1+8f_3-f_4) \,\,,\,\, 截断误差- \frac{h^4}{30}f^{(5)}(\xi) f′(x2)=12h1(f0−8f1+8f3−f4),截断误差−30h4f(5)(ξ)