【数值分析】choleskey分解,matlab实现

平方根分解(Choleskey分解)

A = G G T    ,    A 对称正定 A=GG^ \mathrm T \,\,,\,\, A对称正定 A=GGT,A对称正定
A = L D M = L D L T = ( L D 1 / 2 ) ( L D 1 / 2 ) T = G G T \begin{align*} A =LDM= LDL^ \mathrm T=(LD^{1/2})(LD^{1/2})^ \mathrm T=GG^ \mathrm T \end{align*} A=LDM=LDLT=(LD1/2)(LD1/2)T=GGT
{ G y = b G T x = y \begin{cases} Gy=b \\ \\ G^ \mathrm Tx=y \end{cases} Gy=bGTx=y
手算的话根据转置的性质直接把 G {G} G 矩阵写出来就行,非常好写,编程直接参考同济《现代数值计算》算法2.2.3。
matlab编程实现:

%% Choleskey分解解线性方程组
function [x,G] = cholesSolve(A,b)
    n = size(A);
    for i = 1:n
        t = 0;
        for s = 1:i-1
            t = t+ G(i,s)^2;
        end
        G(i,i) = sqrt(A(i,i)-t);
        for k = i+1:n
            t = 0;
            for s = 1:i-1
                t = t+G(i,s)*G(k,s);
            end
            G(k,i) = (A(k,i)-t)/G(i,i);
        end
    end
    % 回代
    for i = 1:n
        t = 0;
        for j = 1:i-1
            t = t+G(i,j)*y(j);
        end
        y(i)=(b(i)-t)/G(i,i);
    end
    for i = n:-1:1
        t = 0;
        for j = i+1:n
            t = t+G(j,i)*x(j);
        end
        x(i) = (y(i)-t)/G(i,i);
    end
    x = x';
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值