论文写作笔记3:JAMIA-相关论文

JAMIA

Journal of the American Medical Informatics Association

https://amia.org/news-publications/journals/jamia

https://academic.oup.com/jamiaopen?login=true

JCR Q1/Q2; CCF 综合B.

中科院分区: 医学1区计算机2区管理学2区top

搜索中的期刊文章仅直接链接到期刊站点的公共页面。对于仅限会员访问JAMIA或应用临床信息学杂志文章的全员访问

生物医学和健康信息学同行评审期刊.

包括方向: 临床护理,临床研究,转化科学,实施科学,成像,教育,消费者健康,公共卫生和政策等领域

Suzanne Bakken是主编,领导着一个由信息学领导者组成的团队

关键词

肝移植Liver Transplantation

术后并发症Postoperative complication forecast/ predicting

分类预测Classification forecast/ predicting

决策Decision-making

高维小样本High Dimension and Low Sample Size Data

迁移学习Transfer learning(都是CV/NLP)

机器学习machine learning

JAMIA的论文总量相对偏少, 其中还有一部分是自动化临床管理系统方面的, 但是剩下的目前粗略看下来感觉和我们项目相关度更高些, 用机器学习方法的, 和任务是预测并发症的比较多.

在找到的论文中看作者专业, JAMIA偏医学多一些.

肝移植Liver Transplantation

其他无关论文均为应用方向:

(JAMIA)使用自动化临床管理系统的效果

(JAMIA)实施计算机警报后效果

(JAMIA) 输入动态电子健康记录HER的系统开发

(ACI)调查问卷定性分析使用CDS(计算机化临床决策支持)可能性与阻碍

论文主题论文发表时间作者背景被引备注
1基于机器学习, 预测移植术后1、3和5年的住院情况
Machine learning–based prediction of health outcomes in pediatric organ transplantation recipients
2021.5信息(通讯医学)0勘误之后效果很拉.
但是缺失值填充等方法可以借鉴
2一种基于可能性的卷积方法,用于估计纵向健康记录数据中的主要健康事件:外部验证研究
A likelihood-based convolution approach to estimate major health events in longitudinal health records data: an external validation study
2021.9统计(通讯医学)0付费下载

1.基于机器学习的儿科器官移植受者健康结果预测

论文主题

Machine learning–based prediction of health outcomes in pediatric organ transplantation recipients

https://academic.oup.com/jamiaopen/article/4/1/ooab008/6168494

论文doi

https://doi.org/10.1093/jamiaopen/ooab008

发表时间:2021.5

作者背景:信息(通讯 医学)

被引量:0

期刊:(JAMIA Open)

勘误

https://doi.org/10.1093/jamiaopen/ooab034

修正DL得到的ROC 0.85->0.59

目标

预测移植术后1、3和5年的住院情况

输入

输出

方法

Logistic回归、朴素贝叶斯、支持向量机和深度学习(DL)方法

使用Shapley加性解释(Shap)来增加DL模型结果的可解释性。

确定各种器官类型的显著预测因子(salient predictors across organ types), 其中包括各种医学、患者和社会特征(Various medical, patient, and social variables)

数据

样本来自大型儿科器官移植中心的儿童肾、肝和心脏移植受者

结果

主要贡献

不足可改进

备注

对更正表示钦佩

效果很拉, 但是缺失值填充等方法可以借鉴

缺失值填充: 随机森林插补(missforest)

Python包使用说明:

https://www.cnpython.com/pypi/missing

摘要

目标

预测移植后健康结果

关键影响因素的识别

目前研究通常依赖于普通线性模型之类的技术提供有限的预测效果; 数据驱动的模型和机器学习 (ML) 方法在儿科移植结果研究中的应用和成功有限。

当前研究的目的: 检验(examine) ML 模型预测患者住院情况的效果

样本来自大型实体器官移植计划的儿童肾、肝和心脏移植受者

材料和方法

Logistic回归、朴素贝叶斯、支持向量机和深度学习(DL)方法

使用来自一家大型儿科器官移植中心的患者和管理数据

using patient and administrative data from a large pediatric organ transplant center.

预测移植后1、3和5年的住院情况

predict 1-, 3-, and 5-year post-transplant hospitalization

结果

DL模型相比传统的ML模型, 在各种器官类型和预测时间窗(organ types and prediction windows)上都没提升

ROC曲线下面积(area under the receiver operating characteristic curve)取值范围为0.5~0.593。使用Shapley加性解释(Shap)来增加DL模型结果的可解释性。

确定各种器官类型的显著预测因子(salient predictors across organ types), 其中包括各种医学、患者和社会特征(Various medical, patient, and social variables)

讨论&结论

DL模型预测术后风险效果很拉, 如果有大量样本说不定会好点.

2. 一种基于可能性的卷积方法,用于估计纵向健康记录数据中的主要健康事件:外部验证研究

论文主题

A likelihood-based convolution approach to estimate major health events in longitudinal health records data: an external validation study

论文doi

https://doi.org/10.1093/jamia/ocab087

论文发表时间/作者背景

2021.9 统计(通讯医学)

不看引用量了, 这新发的基本没什么引用

被引量0

目标

基于相关事件时间戳估计缺失事件时间戳

估算患者需要进行肝移植的日期

输入

输出

方法

基于卷积的变化检测

数据

验证数据: 来自国家确定的临床索赔OptomLabs数据库的数据

测试数据: 来自M Health Fairview系统的单中心(single center)数据集

结果

整个时间段估计的真实日期与估计日期之间的中位误差(median error)为零天,

移植的中位误差分别为92%(训练集)和84%(测试集)

主要贡献

不足可改进

备注

逻辑给人感觉还不错(有说服力)

摘要

目的

在电子健康记录数据中,由重大生理或治疗变化定义的重大健康事件的确切时间戳通常缺失

基于相关数据元素时间戳估计健康事件时间戳

材料和方法

基于卷积的变化检测方法

验证数据: 来自国家确定的临床索赔OptomLabs数据库的数据

测试数据: 来自M Health Fairview系统的单中心(single center)数据集

结果

估算患者需要进行肝移植的日期

整个时间段估计的真实日期与估计日期之间的中位误差(median error)为零天,

移植的中位误差分别为92%(训练集)和84%(测试集)

讨论

估计时间戳效果好

外部验证也效果好, 用在其他数据不足的系统应该也好用

此次用的是肝移植,但是其他有准确时间戳的多个相关事件预测事件应该也好用

结论

可以利用相关事件的时间戳来估计缺失的时间戳

由于该模型是在具有全国代表性的数据集上开发的,因此可以成功地迁移到当地卫生系统,而不会造成严重的准确性损失

并发症预测complication predicting

论文主题论文发表时间作者背景被引备注
1机器学习算法预测糖尿病的并发症
Predicting complications of diabetes mellitus using advanced machine learning algorithms
2020.9数据分析和生物医学信息学中心7
2SVM预测PCI并发症
Predicting complications of percutaneous coronary intervention using a novel support vector method
2013.4医学(通讯计算机)3
3机器学习方法预测压力损伤(一种并发症)
Predicting pressure injury using nursing assessment phenotypes and machine learning methods
2021.2医学2付费下载
4预测门诊手术患者的术后恶心和呕吐
An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors
2012.11医学23太偏医学了

1. 机器学习算法预测糖尿病的并发症

论文主题

Predicting complications of diabetes mellitus using advanced machine learning algorithms

论文doi

https://doi.org/10.1093/jamia/ocaa120

论文发表时间&作者背景

2020.9   数据分析和生物医学信息学中心

被引量7

目标

预测2型糖尿病(DM2)患者是否会发生10种选定的并发症

输入

输出

方法

预测2型糖尿病(DM2)患者是否会出现10种选定的并发症

RNN, 长短期记忆(LSTM)和RNN门控递归单元(GRU)深度学习方法,并与随机森林和多层感知器传统模型进行了比较

数据

2003年至2011年期间在加利福尼亚州医疗成本和利用项目州住院患者数据库

结果

主要贡献

不足可改进

备注

摘要

目的

预测2型糖尿病(DM2)患者是否会发生10种选定的并发症

材料和方法

2003年至2011年期间在加利福尼亚州医疗成本和利用项目州住院患者数据库

使用递归神经网络(RNN)、长短期记忆(LSTM)和RNN门控递归单元(GRU)深度学习方法,并与随机森林和多层感知器传统模型进行了比较

给定糖尿病诊断和并发症诊断之间对应最小住院次数(3种最小次数分别训练看准确性),比较所选并发症的预测准确性。

结果

(The diagnosis domain was used for experiments在实验中使用了诊断?)

RNN GRU模型效果最好,准确率在73%(心肌梗死)到83%(慢性缺血性心脏病)

传统模型的准确率在66%到76%之间

讨论

住院次数是影响预测准确性的重要因素。4次住院试验的准确性明显高于2次住院试验

为了达到更高的准确性,深度学习模型需要对至少1000名患者进行训练,如果训练数据集只有500名患者,准确率会显着下降

并发症的预测准确率随着时间的推移而下降

抑郁障碍和慢性缺血性心脏病的诊断准确率最高。

结论

RNN GRU最好

2.SVM预测PCI并发症

论文主题

Predicting complications of percutaneous coronary intervention using a novel support vector method

论文doi

https://academic.oup.com/jamia/article/20/4/778/820344

论文发表时间&作者背景

2013.4   医学(通讯计算机)

被引量3

目标

预测实验13种不同的PCI并发症

输入

输出

方法

逻辑回归 (LR)、单类支持向量机分类 (OC-SVM) 和两类支持向量机分类 (TC-SVM)。对于OP-SVM和TC-SVM方法,还考虑了具有成本敏感权重的算法变体。

数据

(BMC2)多中心注册中心2007年和2008年的数据(n=41016)

对比其他分类器训练时使用BMC2 data from 2009 (n=20 289)

结果

主要贡献

不足可改进

备注

摘要

目的

基于增强型单类学习算法

预测冠状动脉介入治疗(PCI) in-laboratory并发症

材料与方法

使用密歇根心血管联盟蓝十字蓝盾(BMC2)多中心注册中心2007年和2008年的数据(n=41016),

一加类(one-plus-class)向量机(OP-SVM)算法训练模型

预测实验13种不同的PCI并发症

对比分类器(训练时使用BMC2 data from 2009 (n=20 289)): Logistic回归(LR)、一类支持向量机分类(OC-SVM)和两类支持向量机分类(TC-SVM)。对于OP-SVM和TC-SVM方法,还考虑了具有代价敏感权重的算法的变体

结果

对于所研究的大多数PCI并发症(8例),OP-SVM算法及其成本敏感变体的ROC曲线下面积最高

Hosmer-Lemeshow的χ2值(7例)和平均交叉熵误差(8例)也有类似的改善。

结论

OP-SVM算法相对于LR和传统的支持向量机分类提高了对不同PCI并发症的识别率和校正能力

3. 机器学习方法预测压力损伤(一种并发症)

论文主题

Predicting pressure injury using nursing assessment phenotypes and machine learning methods

论文doi

https://doi.org/10.1093/jamia/ocaa336

论文发表时间&作者背景

2021.2   医学

被引量 2

目标

预测并发症(压力性损伤)

两种压力损伤表型:非医院获得性压力损伤(N=4398)和医院获得性压力损伤(N=1767)

输入

28个临床特征

输出

方法

各种机器学习预测模型

随机森林模型表现最好

五折交叉验证

数据

电子病历数据

结果

主要贡献

不足可改进

备注

摘要

目的

预测并发症(压力性损伤)

基于机器学习,使用来自护士输入的直接患者评估数据的表型(phenotypes)

方法

电子病历数据,包括护士输入的完整评估记录

基于机器学习的压力性损伤预测模型

五折交叉验证来评价模型的性能

结果

定义了两种压力损伤表型:非医院获得性压力损伤(N=4398)和医院获得性压力损伤(N=1767),代表了两种截然不同的临床情景

总共提取了28个临床特征,并建立了两种压力损伤表型的多机器学习预测模型。

随机森林模型表现最好,在2个测试集中分别达到0.92和0.94的AUC。

格拉斯哥昏迷量表是两组患者最重要的特征(一种意识水平测量方法)

4. 预测门诊手术患者的术后恶心和呕吐

论文主题

An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors

论文doi

https://academic.oup.com/jamia/article/19/6/995/730069

论文发表时间&作者背景

2012.11  医学

被引量 23

目标

使用16个患者相关、手术和麻醉预测因子来开发逻辑回归模型

输入

16个与患者相关的、手术的和麻醉的预测因子

输出

方法

Logistic回归模型

实验模型(EM)与原始Apfel模型(OAM)、修正的Apfel模型(RAM)、简化的Apfel风险评分(SARS)和修正的辛克莱模型(RSM)进行比较

数据

2505例门诊手术病例资料

结果

主要贡献

不足可改进

备注

太偏医学了

摘要

目的

术后恶心呕吐(PONV)是门诊手术患者常见的并发症

结合不可修改(non-modifiable)的患者特征和可修改(modifiable)的从业者特定的麻醉实践来预测患者患PONV的风险

材料与方法

2505例门诊手术病例资料

16个与患者相关的、手术的和麻醉的预测因子被用来建立Logistic回归模型

experimental model (EM)与原始Apfel模型(OAM)、修正的Apfel模型(RAM)、简化的Apfel风险评分(SARS)和修正的辛克莱模型(RSM)进行比较,检验用曲线下面积(AUC)

结果

EM包含11个输入变量。EM的AUC为0.738,OAM为0.620,RAM为0.629,SARS为0.626,RSM为0.711。

EM与所有其他模型、OAM与RSM、RAM与RSM、SARS与RSM之间的AUC差异均有统计学意义(P<0.05)

讨论

只有OAM效果很拉, 其他都还行

结论

EM效果好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值