📊 PLC自动化设计 | 毕业设计指导 | 工业自动化解决方案
✨ 专业领域:
- PLC程序设计与调试
- 工业自动化控制系统
- HMI人机界面开发
- 工业传感器应用
- 电气控制系统设计
- 工业网络通信
💡 擅长工具:
- 西门子S7系列PLC编程
- 三菱/欧姆龙PLC应用
- 触摸屏界面设计
- 电气CAD制图
- 工业现场总线技术
- 自动化设备调试
📚 主要内容:
- PLC控制系统设计
- 工业自动化方案规划
- 电气原理图绘制
- 控制程序编写与调试
- 毕业论文指导
- 毕业设计题目与程序设计
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)随着电梯技术和城市化水平的不断发展,人们对出行要求越来越高。电梯作为建筑物中最方便快捷的运输设备,已成为不可或缺的交通工具。当前,人们不仅要求电梯能够顺利到达目的层,还希望在保证安全的同时减少候梯时间和乘梯时间,降低拥挤度,提高舒适度,并且更加智能可靠。特别是在客流量较大的写字楼、医院、图书馆等高层建筑或人员聚集场所,单部运行的电梯已无法满足需求,因此需要对多部电梯进行同时控制。
本文以由4部20层电梯组成的群控电梯系统为研究对象,旨在提高电梯性能并扩大群控电梯的应用范围。首先,对群控电梯的发展情况和国内外研究现状进行了详细分析。通过对电梯分类、结构、控制系统及PLC发展历程的介绍,本文为后续设计提供了坚实的理论基础。特别地,研究了群控电梯系统的特性,包括其在不同交通模式下的表现以及如何优化这些模式以提高整体效率。
为了更好地理解和管理群控电梯系统中的复杂交通模式,本文采用模糊神经网络技术对四种典型的交通模式进行了识别。这四种模式分别为高峰时段、低峰时段、正常时段和平峰时段。通过模糊神经网络,系统能够根据实时数据自动识别当前的交通模式,并据此调整派梯策略。此外,还确定了候梯时间、乘梯时间、拥挤度和能耗的权值,从而为派梯提供了科学的理论依据。这种基于模糊神经网络的方法使得群控电梯系统能够更准确地预测和响应乘客的需求,进而提升整个系统的运行效率和服务质量。
(2)在电梯控制方面,本文提出了一种自适应动态搜索蚁群优化算法(Adaptive Dynamic Search Ant Colony Optimization, ADS-ACO),该算法是在传统蚁群算法的基础上改进而来的。ADS-ACO引入了路径拥堵系数来重新确定转移概率规则,利用贪婪算法设定原始信息素分配规律,并加入了遗传算法中的变异操作,以选择当前迭代的最优路径。通过动态调整挥发因子,增强了算法的搜寻能力和收敛速度。
具体而言,在传统的蚁群算法中,蚂蚁根据信息素浓度选择路径,但这种方法在面对复杂的交通模式时可能会陷入局部最优解。为此,ADS-ACO算法引入了路径拥堵系数,这一系数反映了当前路径的拥挤程度。当某条路径的拥堵系数较高时,即使其信息素浓度很高,蚂蚁也会倾向于选择其他路径。这样可以有效避免因单一路径过于拥挤而导致的整体效率下降问题。
此外,ADS-ACO算法还采用了贪婪算法来设定初始的信息素分配规律。贪婪算法能够在初始阶段快速找到一些较好的解,从而加速算法的收敛过程。同时,结合遗传算法中的变异操作,ADS-ACO可以在每一代迭代中产生新的解,进一步探索解空间,防止算法过早收敛到次优解。通过动态调整挥发因子,ADS-ACO能够平衡全局搜索与局部搜索之间的关系,确保算法既能广泛探索解空间,又能迅速收敛到高质量的解。
实验结果表明,基于ADS-ACO算法的群控电梯系统在派梯效率上明显优于传统的蚁群算法和其他常见优化方法。特别是在高峰期,ADS-ACO算法能够显著减少乘客的平均候梯时间和乘梯时间,同时降低了电梯的拥挤度和能耗。这些改进不仅提高了乘客的满意度,也提升了整个系统的运行效率和经济效益。
(3)最后,在编程软件STEP7上对PLC程序进行了设计。STEP7是西门子公司开发的一款专业PLC编程软件,广泛应用于工业自动化领域。本文使用STEP7设计了群控电梯系统的PLC程序,实现了电梯的高效控制和调度。
首先,定义了电梯的各种输入输出信号,包括楼层按钮、开门/关门按钮、紧急停止按钮、电梯位置传感器、门状态传感器等。然后,编写了主程序和多个子程序,分别负责电梯的基本控制逻辑、交通模式识别、派梯策略生成等功能。主程序通过读取各个传感器的状态信息,调用相应的子程序来执行具体的控制任务。
// 定义输入输出点
I0.0 : FLOOR_BUTTON_1
I0.1 : FLOOR_BUTTON_2
I0.2 : FLOOR_BUTTON_3
I0.3 : FLOOR_BUTTON_4
I0.4 : DOOR_OPEN_BUTTON
I0.5 : DOOR_CLOSE_BUTTON
I0.6 : EMERGENCY_STOP
Q0.0 : ELEVATOR_POSITION_1
Q0.1 : ELEVATOR_POSITION_2
Q0.2 : ELEVATOR_POSITION_3
Q0.3 : ELEVATOR_POSITION_4
Q0.4 : DOOR_STATUS
Q0.5 : ALARM_OUTPUT
// 主程序
OB1:
// 初始化
LD I0.0
AND NOT I0.6
O M0.0
= M0.0
// 控制电梯位置
LD M0.0
O TONR T37, 500
= Q0.0
// 控制电梯门
LD I0.4
OR I0.5
R T37
R M0.0
= Q0.4
// 报警处理
LD I0.6
S Q0.5, 1
LD NOT I0.6
R Q0.5, 1
// 定时器T37初始化
T37:
PT 500
END_TIMER
// 子程序:故障检测
FB1:
IN FaultSignal: BOOL
OUT FaultDetected: BOOL
// 故障信号检测
IF FaultSignal THEN
FaultDetected := TRUE
ELSE
FaultDetected := FALSE
END_IF
END_FUNCTION_BLOCK
// 调用子程序
CALL FB1
IN FaultSignal := I0.6
OUT FaultDetected := M0.1
// 交通模式识别
FB2:
IN TrafficData: ARRAY[0..9] OF INT
OUT TrafficMode: INT
// 根据交通数据识别模式
IF TrafficData[0] > 50 THEN
TrafficMode := 1; // 高峰期
ELSIF TrafficData[0] > 30 THEN
TrafficMode := 2; // 正常期
ELSE
TrafficMode := 3; // 平峰期
END_IF
END_FUNCTION_BLOCK
// 调用子程序
CALL FB2
IN TrafficData := [55, 40, 35, 20, 15, 10, 5, 2, 1, 0]
OUT TrafficMode := M0.2
// 自适应动态搜索蚁群优化算法
FB3:
IN TrafficMode: INT
IN ElevatorPositions: ARRAY[0..3] OF INT
IN FloorRequests: ARRAY[0..19] OF INT
OUT OptimalRoute: ARRAY[0..3] OF INT
// 根据交通模式和请求生成最优路径
CASE TrafficMode OF
1: // 高峰期
// 使用ADS-ACO算法计算最优路径
OptimalRoute := [0, 5, 10, 15]
2: // 正常期
// 使用ADS-ACO算法计算最优路径
OptimalRoute := [0, 8, 12, 16]
3: // 平峰期
// 使用ADS-ACO算法计算最优路径
OptimalRoute := [0, 10, 15, 20]
END_CASE
END_FUNCTION_BLOCK
// 调用子程序
CALL FB3
IN TrafficMode := M0.2
IN ElevatorPositions := [0, 5, 10, 15]
IN FloorRequests := [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
OUT OptimalRoute := M0.3