基于Super-SBM模型和Malmquist指数的上市物流企业投入产出效率分析【附代码】

   📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策

✨ 专业领域:

  • 数据挖掘与清洗

  • 大数据处理与存储技术

  • 机器学习与深度学习模型

  • 数据可视化与报告生成

  • 分布式计算与云计算

  • 数据安全与隐私保护


💡 擅长工具:

  • Python/R/Matlab 数据分析与建模

  • Hadoop/Spark 大数据处理平台

  • SQL数据库管理与优化

  • Tableau/Power BI 数据可视化工具

  • TensorFlow/PyTorch 深度学习框架

大数据技术专业题目与数据

数据科学与大数据技术毕业论文【数据】文章浏览阅读616次,点赞11次,收藏20次。先定方向,然后定题目,明确研究对象、研究内容、创新点在哪里。总的来说,最重要的就是定的题目要确保后续能够写的出来,写的顺畅。论文需要的数据提前准备好,案例提前查阅清楚,文献在定题目前至少看上几十篇。本人长期从事这方面的科研工作,去年光是帮忙修改和润色就有几十篇文章,这里分享一些今年最新的题目及写作指导。有具体问题,可以扫码底部二维码或者私信。这里也总结了适合今年的选题,几乎涵盖了所有选题方向。有简单的,有难的。有的题目可以直接用,有的还需要再细化下,稍微改动一下,也能作为创新的选题。后续会陆续更新。https://blog.csdn.net/lagougongzuoshi/article/details/144359924?spm=1001.2014.3001.5501

(1) 上市物流企业投入产出效率的现状与测度方法

近年来,物流行业作为现代经济的重要支柱产业,其发展受到社会广泛关注。然而,与发达国家相比,我国物流行业的整体效率水平仍存在较大提升空间。为了明确我国上市物流企业的效率现状及提升路径,本文选取2005-2020年45家上市物流企业为样本,采用数据包络分析(DEA)模型和Malmquist指数模型对其投入产出效率进行测度与分析。

首先,基于国内外相关文献和实际情况,本文构建了投入与产出指标体系。在投入指标方面,选取了董事人数、员工人数、固定资产和管理费用,分别反映企业的人力资源投入、资本投入和管理成本。在产出指标方面,选取营业收入和每股收益,衡量企业的经济效益和股东回报。这些指标通过相关性分析和降维方法筛选得出,能够充分解释原始数据的变化特征。

其次,采用CCR和BCC模型分别测算样本企业的综合效率、纯技术效率和规模效率,以刻画企业的静态效率情况。结果显示,多数企业的综合效率水平较低,纯技术效率存在一定优势,但规模效率普遍较差,反映出多数企业的资源利用效率存在不足。此外,为解决DEA模型中效率值无法排序的问题,本文引入Super-SBM模型计算超效率值,进一步分析企业效率之间的相对差异。

最后,为探究企业效率的动态变化趋势,采用DEA-Malmquist指数模型从时间维度和行业维度进行剖析。结果表明,样本企业的全要素生产率呈现波动上升趋势,其中技术进步指数对效率提升的贡献最为显著,但纯技术效率变动指数和规模效率变动指数的提升幅度较小,表明企业在资源整合与规模优化方面仍有较大改进空间。

(2) 不同维度的效率分析与行业差异探讨

为了深入理解我国物流企业效率的影响因素及其表现差异,本文进一步从行业、区域和城市等级三个维度进行比较分析。

行业维度: 样本企业分布在快递物流、综合物流和运输物流等不同领域。分析结果显示,快递物流企业的效率水平显著高于其他类型企业。这主要归因于快递物流行业对信息化和数字化技术的高应用程度,有效提升了企业的运营效率和服务质量。而综合物流企业由于业务链条长、涉及环节复杂,其综合效率水平偏低。此外,运输物流企业的效率差异较大,其中规模较大的企业表现较好,但中小型企业在管理能力和资源配置方面存在明显不足。

区域维度: 样本企业按照东、中、西部地区分类后发现,东部地区企业的综合效率和纯技术效率均显著高于中西部地区。这与东部地区物流市场发育成熟、基础设施完善以及技术应用水平较高密切相关。中部地区企业的效率水平居中,但规模效率较低,表明中部地区在资源利用方面仍有较大优化空间。而西部地区企业的效率水平普遍偏低,反映出其在资本投入和技术能力上的短板。

城市等级维度: 按照城市等级划分,位于一线城市的物流企业表现出较高的效率水平。这主要得益于一线城市的市场需求旺盛和资源优势明显。二线城市企业的效率水平次之,但其纯技术效率接近一线城市,说明其在技术能力方面具备一定潜力。三线及以下城市的企业效率水平相对较低,尤其在规模效率上表现不佳,说明这些地区的企业资源配置不均衡且规模化发展不足。

(3) 提升物流企业效率的优化路径与对策建议

基于以上分析结果,本文从政府和企业两个层面提出了具体的优化路径和对策建议,以期为我国物流行业的高效发展提供参考。

政府层面

  1. 完善物流基础设施建设:政府应加大对中西部地区物流基础设施的投入力度,推动交通网络的优化和物流园区的布局完善,提升区域间物流资源的均衡性。

  2. 推动技术创新与应用:鼓励物流企业加强信息技术、自动化技术和绿色物流技术的研发与应用,促进物流行业的数字化转型和技术进步。

  3. 优化政策支持体系:制定有针对性的税收优惠政策和金融支持政策,特别是对中小型物流企业提供融资便利,以提升其在市场竞争中的活力。

企业层面

  1. 加强资源整合与协同管理:企业应注重内部资源整合,通过优化管理流程和提升服务能力,提高资源利用效率和运营水平。

  2. 注重人才培养与引进:物流企业需要加大对专业人才的培养力度,同时引入高端管理和技术人才,为企业的技术创新和战略规划提供智力支持。

  3. 扩大规模效应与市场份额:中小型企业可以通过联盟、并购等方式扩大业务规模,提升市场竞争力和规模效率。

import pandas as pd
import numpy as np
from pyDEA import DEA

# 读取数据
data = pd.read_csv("logistics_data.csv")

# 提取投入与产出数据
inputs = data[["board_members", "employees", "fixed_assets", "management_costs"]].values
outputs = data[["revenue", "earnings_per_share"]].values

# 静态效率测算(CCR模型)
ccr_model = DEA(inputs, outputs, orientation='output', return_to_scale='constant')
ccr_efficiency = ccr_model.get_efficiency()
data['CCR_Efficiency'] = ccr_efficiency

# 静态效率测算(BCC模型)
bcc_model = DEA(inputs, outputs, orientation='output', return_to_scale='variable')
bcc_efficiency = bcc_model.get_efficiency()
data['BCC_Efficiency'] = bcc_efficiency

# 动态效率分析(Malmquist指数)
from pyDEA import Malmquist
malmquist_model = Malmquist(inputs, outputs, time_variable='year')
malmquist_results = malmquist_model.get_index()
data = pd.concat([data, malmquist_results], axis=1)

# 区域效率对比
data_grouped = data.groupby('region').mean()
print(data_grouped[['CCR_Efficiency', 'BCC_Efficiency']])

# 保存结果
data.to_csv("efficiency_results.csv", index=False)

# 示例可视化
import matplotlib.pyplot as plt
plt.figure()
data.groupby('region')['CCR_Efficiency'].mean().plot(kind='bar', title='CCR Efficiency by Region')
plt.xlabel('Region')
plt.ylabel('Average Efficiency')
plt.show()

### 超效率SBM-GML模型原理解释 #### 3.1 定义与背景 超效率SBM (Slack-Based Measure) 模型是基于传统SBM模型的一种改进版本,旨在解决当多个决策单元(DMU)被评价为同样高效时无法区分其相对表现的问题。该模型允许DMU的效率得分超出1,从而能够更细致地区分高效率单位之间的差异[^1]。 #### 3.2 数学表达式 对于给定的一组输入\(X\)输出\(Y\), 对于第 \(j_0\) 个DMU而言,在考虑松弛变量的情况下,超效率SBM模型的目标是最小化加权后的总投入增加量加上产出减少量: \[ \theta_{o}^{*}=min(\sum _{r=1}^{s}\rho ^{-}_{r}S^{-}_{ro}+\sum _{i=1}^{m}\lambda ^{+}_{i}S^{+}_{io}) \] 其中, - \( S^- \) \( S^+ \) 分别表示各产出项下的不足部分(负偏差)各项下多余的资源浪费(正偏差) - \( \rho_r^- \),\( \lambda_i^+ \) 是对应的权重参数 - 当优化解使得所有 \( S^- = 0 \) 并且所有的 \( S^+=0 \),则表明此DMU处于生产前沿面上;否则说明存在未充分利用或过度使用的要素. #### 3.3 GML指数的应用 GML(Global Malmquist Productivity Index) 指数是用来衡量生产力变化的一个重要工具。通过引入时间维度,可以利用两期间的距离函数来构建全局马尔姆奎斯特生产率指数(GML)[^3]. 将这一概念应用于超效率SBM框架中,则可以通过比较不同时间段内的技术进步技术效率变动情况,更加全面地反映各个DMU随时间的变化趋势发展水平。 ```matlab % MATLAB伪代码展示如何计算单个DMU的超效率SBM值 function theta_star = super_efficiency_sbm(X, Y, j0) % X: 输入矩阵; Y: 输出矩阵; j0: 目标DMU索引 n = size(X, 1); m = size(X, 2); s = size(Y, 2); cvx_begin quiet; variable lambda(n); variables S_minus(s) >= 0; variables S_plus(m) >= 0; minimize(sum(S_minus)+sum(S_plus)); subject to sum(lambda .* Y(:, ~isequal(1:n,j0))) - Y(:, j0)' * ones(size(Y, 2), 1) == -S_minus'; sum(lambda .* X(:, ~isequal(1:n,j0))) + X(:, j0)' * ones(size(X, 2), 1) == S_plus'; lambda >= 0; cvx_end theta_star = norm([S_minus'; S_plus'], 'fro'); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值