泛函分析笔记10:Hahn-Banach定理与共轭算子

3.5Hahn-banach定理

定义 4.15: 设F是一个非空集合,\prec为 F \mathcal{F} F 上的一个二 元关系。如果
(1) ∀ α ∈ F \forall \alpha \in \mathcal{F} αF α ≺ α \alpha \prec \alpha αα; (反身性)
(2) α ≺ β , β ≺ γ ⟹ α ≺ γ \alpha \prec \beta, \quad \beta \prec \gamma \Longrightarrow \alpha \prec \gamma αβ,βγαγ; (传递性)
(3) α ≺ β , β ≺ α ⟹ α = β \alpha \prec \beta, \quad \beta \prec \alpha \Longrightarrow \alpha=\beta αβ,βαα=β; (反对称性)
则称 ≺ \prec F \mathcal{F} F 上的一个半序, 称 ( F , ≺ ) (\mathcal{F}, \prec) (F,) 为半序集。 如果 ∀ α , β ∈ F \forall \alpha, \beta \in \mathcal{F} α,βF, 有 α ≺ β \alpha \prec \beta αβ β ≺ α \beta \prec \alpha βα 成立, 则称 ( F , ≺ ) (\mathcal{F}, \prec) (F,) 为全序集。

( F , ≺ ) (\mathcal{F}, \prec) (F,) 为半序集 α ∈ F \alpha \in \mathcal{F} αF, 如果 F \mathcal{F} F 中没有比 α \alpha α 大的 元 (即若 α ≺ β \alpha \prec \beta αβ, 则 α = β \alpha=\beta α=β ), 则称 α \alpha α 为极大元。
A ⊆ F , β ∈ F A \subseteq \mathcal{F}, \beta \in \mathcal{F} AF,βF, 如果 ∀ α ∈ A \forall \alpha \in A αA α ≺ β \alpha \prec \beta αβ, 则称 β \beta β A A A 的一个上界。
注: 极大元不一定是最大元, 即使存在也末必唯 -。

引理 4.16: (Zorn) 设 ( F , ≺ ) (\mathcal{F}, \prec) (F,) 为半序集, 且其中任一全序 子集在 F \mathcal{F} F中均有上界, 则 F \mathcal { F } F 有极大元。

定理 4.17: (Hahn-Banach定理)设 X X X 为实线性空间, M ⊆ M \subseteq M X X X 为子空间, p ( x ) p(x) p(x) X X X 上的次加、正齐性泛函, f f f M M M 上的线性泛函且 f ( x ) ≤ p ( x ) , ∀ x ∈ M f(x) \leq p(x), \forall x \in M f(x)p(x),xM 。则存在 X X X 上的 线性泛函 F F F 使 F ( x ) = f ( x ) , ∀ x ∈ M F(x)=f(x), \forall x \in M F(x)=f(x),xM F ( x ) ≤ p ( x ) , ∀ x ∈ X F(x) \leq p(x), \forall x \in X F(x)p(x),xX

注: F F F不唯一

定理 4.18: 设 X X X 为复线性空间, M ⊆ X M \subseteq X MX 为复子空 间, p ( x ) p(x) p(x) X X X 上的次加、绝对齐性泛函, f f f M M M 上的 复线性泛函且 ∣ f ( x ) ∣ ≤ p ( x ) , ∀ x ∈ M |f(x)| \leq p(x), \quad \forall x \in M f(x)p(x),xM 。则存在 X X X 上的复 线性泛函 g g g 使 g ∣ M = f \left.g\right|_{M}=f gM=f 以及 ∣ g ( x ) ∣ ≤ p ( x ) , ∀ x ∈ X |g(x)| \leq p(x), \quad \forall x \in X g(x)p(x),xX

记号: X ∗ = B ( X , K ) X^*=\mathscr B(X,\mathbb K) X=B(X,K)(有界线性泛函全体)是 X X X的共轭空间

定理 4.19:(保范延拓定理)设 X X X 赋范, M ⊆ X M \subseteq X MX 为子空间, f ∈ M ∗ f \in M^{*} fM, 则 存在 g ∈ X ∗ g \in X^{*} gX 使 g ∣ M = f \left.g\right|_{M}=f gM=f ∥ g ∥ = ∥ f ∥ M \|g\|=\|f\|_{M} g=fM

推论:设 X X X是赋范空间,则 X ∗ ≠ ∅ X^*\not= \empty X=

推论: B ( X , X 1 ) \mathscr B(X,X_1) B(X,X1)是Banach空间    ⟺    \iff X 1 X_1 X1是Banach空间。

3.6共轭算子与共轭空间

T ∈ B ( X , X 1 ) T \in B\left(X, X_{1}\right) TB(X,X1), 对任意 f ∈ X 1 ∗ f \in X_{1}^{*} fX1 定义 T ∗ ( f ) = f ∘ T T^{*}(f)=f \circ T T(f)=fT, 即
T ∗ ( f ) ( x ) = f ( T x ) = f ∘ T ( x ) , ∀ x ∈ X T^{*}(f)(x)=f(T x)=f \circ T(x), \quad \forall x \in X T(f)(x)=f(Tx)=fT(x),xX
T ∗ ( f ) ∈ X ∗ T^{*}(f) \in X^{*} T(f)X, 所以 T ∗ T^{*} T 是一个从 X 1 ∗ X_{1}^{*} X1 X ∗ X^{*} X 的映射。 事实上, T ∗ T^{*} T 是有界线性算子, 称之为 T T T 的共轭算子。

定理 4.20:
(1) 设 T ∈ B ( X , X 1 ) T \in B\left(X, X_{1}\right) TB(X,X1), 则 T ∗ ∈ B ( X 1 ∗ , X ∗ ) T^{*} \in B\left(X_{1}^{*}, X^{*}\right) TB(X1,X) ∥ T ∗ ∥ = \left\|T^{*}\right\|= T= ∥ T ∥ \|T\| T;
(2) ( T 1 + T 2 ) ∗ = T 1 ∗ + T 2 ∗ , ( α T ) ∗ = α T ∗ \left(T_{1}+T_{2}\right)^{*}=T_{1}^{*}+T_{2}^{*}, \quad(\alpha T)^{*}=\alpha T^{*} (T1+T2)=T1+T2,(αT)=αT;
(3) ( S T ) ∗ = T ∗ S ∗ (S T)^{*}=T^{*} S^{*} (ST)=TS;
(4) T T T 有有界逆 ⟹ T ∗ \Longrightarrow \quad T^{*} T 也有有界逆且 ( T ∗ ) − 1 = ( T − 1 ) ∗ \left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*} (T)1=(T1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值