泛函分析笔记11:特殊共轭空间刻画

3.7特殊共轭空间

[a,b]上连续函数的共轭空间

定理 4.21: (F. Riesz) f ∈ C [ a , b ] ∗ ⟺ ∃ [ a , b ] f \in C[a, b]^{*} \Longleftrightarrow \exists[a, b] fC[a,b][a,b] 上的 有界变差函数 v ( t ) v(t) v(t), 使
f ( x ) = ∫ a b x ( t ) d v ( t ) , ∀ x ∈ C [ a , b ] f(x)=\int_{a}^{b} x(t) d v(t), \quad \forall x \in C[a, b] f(x)=abx(t)dv(t),xC[a,b]
此时, ∥ f ∥ = ⋁ a b ( v ) < ∞ \|f\|=\bigvee_{a}^{b}(v)<\infty f=ab(v)<

[a,b]上p幂可积函数的共轭空间

定理 4.22: 设 1 < p < ∞ , 1 p + 1 q = 1 1<p<\infty, \frac{1}{p}+\frac{1}{q}=1 1<p<,p1+q1=1, 则 f ∈ L p [ a , b ] ∗ ⟺ f \in L^{p}[a, b]^{*} \Longleftrightarrow fLp[a,b] ∃ y ∈ L q [ a , b ] \exists y \in L^{q}[a, b] yLq[a,b], 使
f ( x ) = ∫ a b x ( t ) y ( t ) d t , ∀ x ∈ L p [ a , b ] f(x)=\int_{a}^{b} x(t) y(t) d t, \quad \forall x \in L^{p}[a, b] f(x)=abx(t)y(t)dt,xLp[a,b]
此时, ∥ f ∥ = ∥ y ∥ q \|f\|=\|y\|_{q} f=yq

p幂可和数列的共轭空间

定理 4.23:设 1 < p < ∞ , 1 p + 1 q = 1 1<p<\infty, \frac{1}{p}+\frac{1}{q}=1 1<p<,p1+q1=1, 则 f ∈ ( ℓ p ) ∗ ⟺ ∃ y = { b n } n = 1 ∞ ∈ ℓ q f \in\left(\ell^{p}\right)^{*} \Longleftrightarrow \exists y=\left\{b_{n}\right\}_{n=1}^{\infty} \in \ell^{q} f(p)y={bn}n=1q 使
f ( x ) = ∑ n = 1 ∞ b n ξ n , ∀ x = { ξ n } n = 1 ∞ ∈ ℓ p \begin{aligned} &\quad f(x)=\sum_{n=1}^{\infty} b_{n} \xi_{n}, \quad \forall x=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in \ell^{p} \\ \end{aligned} f(x)=n=1bnξn,x={ξn}n=1p
∥ f ∥ = ∥ y ∥ q \|f\|=\|y\|_q f=yq。在映射 f ↦ y f \mapsto y fy 下, ( ℓ p ) ∗ ≅ ℓ q \left(\ell^{p}\right)^{*} \cong \ell^{q} (p)q

类似地, f ∈ ( ℓ 1 ) ∗ ⟺ ∃ y = { b n } n = 1 ∞ ∈ ℓ ∞ f \in\left(\ell^{1}\right)^{*} \Longleftrightarrow \exists y=\left\{b_{n}\right\}_{n=1}^{\infty} \in \ell^{\infty} f(1)y={bn}n=1 使
f ( x ) = ∑ n = 1 ∞ b n ξ n , ∀ x = { ξ n } n = 1 ∞ ∈ ℓ 1 \begin{array}{r} f(x)=\sum_{n=1}^{\infty} b_{n} \xi_{n}, \quad \forall x=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in \ell^{1} \\ \end{array} f(x)=n=1bnξn,x={ξn}n=11
∥ f ∥ = ∥ y ∥ ∞ \|f\|=\|y\|_\infty f=y ( ℓ 1 ) ∗ ≅ ℓ ∞ \left(\ell^{1}\right)^{*} \cong \ell^{\infty} (1)

极限为0数列的共轭空间

定理 4.24: f ∈ ( c 0 ) ∗ ⟺ ∃ y = { b n } n = 1 ∞ ∈ f \in\left(c_{0}\right)^{*} \Longleftrightarrow \exists y=\left\{b_{n}\right\}_{n=1}^{\infty} \in f(c0)y={bn}n=1 ℓ 1 \ell^{1} 1 使
f ( x ) = ∑ n = 1 ∞ b n ξ n , ∀ x = { ξ n } n = 1 ∞ ∈ ( c 0 ) f(x)=\sum_{n=1}^{\infty} b_{n} \xi_{n}, \quad \forall x=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in\left(c_{0}\right) f(x)=n=1bnξn,x={ξn}n=1(c0)
∥ f ∥ = ∥ y ∥ 1 \|f\|=\|y\|_1 f=y1

极限存在数列的共轭空间

定理 4.25: f ∈ ( c ) ∗ ⟺ ∃ y = { b n } n = 0 ∞ ∈ ℓ 1 f \in(c)^{*} \Longleftrightarrow \quad \exists \quad y=\left\{b_{n}\right\}_{n=0}^{\infty} \in \ell^{1} f(c)y={bn}n=01 使
f ( x ) = ∑ n = 0 ∞ b n ξ n , ∀ x = { ξ n } n = 1 ∞ ∈ ( c ) f(x)=\sum_{n=0}^{\infty} b_{n} \xi_{n}, \quad \forall x=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in(c) f(x)=n=0bnξn,x={ξn}n=1(c)
其中 ξ 0 = lim ⁡ n → ∞ ξ n \xi_{0}=\lim _{n \rightarrow \infty} \xi_{n} ξ0=limnξn, 此时 ∥ f ∥ = ∥ y ∥ 1 = ∑ n = 0 ∞ ∣ b n ∣ \|f\|=\|y\|_1=\sum_{n=0}^{\infty}\left|b_{n}\right| f=y1=n=0bn

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值