极限理论总结04:Delta方法

本文介绍了一元及多元Delta方法的基本原理及其应用。通过该方法,我们可以推导出估计量经过连续函数变换后的渐近分布。文章还提供了具体的例子来说明如何使用Delta方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

06.Delta 方法

如果我们有估计量 T n T_n Tn用来估计参数 θ \theta θ。若 T n T_n Tn以某种收敛到 θ \theta θ并且 g g g连续,由连续映射定理可知相应的 g ( T n ) g(T_n) g(Tn)也收敛到 g ( θ ) g(\theta) g(θ)。当 n ( T n − θ ) \sqrt{n} (T_n-\theta) n (Tnθ)收敛到某一分布时,在一定条件下根据以下Delta方法可以得到 n ( g ( T n ) − g ( θ ) ) \sqrt{n} (g(T_n)-g(\theta)) n (g(Tn)g(θ))也会收敛到某一分布。

定理 6.1(一元Delta方法):设 n ( T n − θ ) → d N ( 0 , σ 2 ( θ ) ) \sqrt{n}\left(T_{n}-\theta\right) \stackrel{d}{\rightarrow} N\left(0, \sigma^{2}(\theta)\right) n (Tnθ)dN(0,σ2(θ)). 令 g : R ↦ R g: \mathbb{R} \mapsto \mathbb{R} g:RR θ \theta θ 可微且 g ′ ( θ ) ≠ 0. g^{\prime}(\theta) \neq 0 . g(θ)=0.
n { g ( T n ) − g ( θ ) } → d N ( 0 , { g ′ ( θ ) } 2 σ 2 ( θ ) ) \sqrt{n}\left\{g\left(T_{n}\right)-g(\theta)\right\} \stackrel{d}{\rightarrow} N\left(0,\left\{g^{\prime}(\theta)\right\}^{2} \sigma^{2}(\theta)\right) n {g(Tn)g(θ)}dN(0,{g(θ)}2σ2(θ))

更一般地,设 r n ( T n − θ ) → d T r_{n}\left(T_{n}-\theta\right) \stackrel{d}{\rightarrow} T rn(Tnθ)dT ,其中 T T T为随机变量 (不一定服从正态分布), r n → ∞ r_{n} \rightarrow \infty rn (并不一定为 n 1 / 2 n^{1 / 2} n1/2 )。如果 g g g θ \theta θ可微且 g ′ ( θ ) ≠ 0 g^{\prime}(\theta) \neq 0 g(θ)=0, 则
r n { g ( T n ) − g ( θ ) } → d g ′ ( θ ) T r_{n}\left\{g\left(T_{n}\right)-g(\theta)\right\} \stackrel{d}{\rightarrow} g^{\prime}(\theta) T rn{g(Tn)g(θ)}dg(θ)T

如果 g ′ ( θ ) = 0 g^{\prime}(\theta)=0 g(θ)=0, 那么得到的极限分布为一退化分布。则对 g ( T n ) g(T_n) g(Tn)考虑更高阶的展开
g ( T n ) = g ( θ ) + g ′ ′ ( θ ) ( T n − θ ) 2 2 + o p { ( T n − θ ) 2 } g\left(T_{n}\right)=g(\theta)+g^{\prime \prime}(\theta) \frac{\left(T_{n}-\theta\right)^{2}}{2}+o_{p}\left\{\left(T_{n}-\theta\right)^{2}\right\} g(Tn)=g(θ)+g(θ)2(Tnθ)2+op{(Tnθ)2}
则有
n { g ( T n ) − g ( θ ) } = g ′ ′ ( θ ) { n ( T n − θ ) } 2 2 + o p ( 1 ) → d g ′ ′ ( θ ) σ 2 ( θ ) 2 χ 1 2 \begin{aligned} n\left\{g\left(T_{n}\right)-g(\theta)\right\} &=g^{\prime \prime}(\theta) \frac{\left\{\sqrt{n}\left(T_{n}-\theta\right)\right\}^{2}}{2}+o_{p}(1) \\ & \stackrel{d}{\rightarrow} \frac{g^{\prime \prime}(\theta) \sigma^{2}(\theta)}{2} \chi_{1}^{2} \end{aligned} n{g(Tn)g(θ)}=g(θ)2{n (Tnθ)}2+op(1)d2g(θ)σ2(θ)χ12

由此给出定理6.2

定理6.2:设 n ( T n − θ ) → d N ( 0 , σ 2 ( θ ) ) \sqrt{n}\left(T_{n}-\theta\right) \stackrel{d}{\rightarrow} N\left(0, \sigma^{2}(\theta)\right) n (Tnθ)dN(0,σ2(θ)). 令 g : R ↦ R g: \mathbb{R} \mapsto \mathbb{R} g:RR θ \theta θ k阶可微且 g ( j ) ( θ ) = 0 g^{(j)}(\theta)=0 g(j)(θ)=0 ∀ j < k \forall j<k j<k g ( k ) ( θ ) ≠ 0 g^{(k)}(\theta) \neq 0 g(k)(θ)=0. 则
n k / 2 { g ( T n ) − g ( θ ) } → d g ( k ) ( θ ) σ k ( θ ) k ! { N ( 0 , 1 ) } k n^{k / 2}\left\{g\left(T_{n}\right)-g(\theta)\right\} \stackrel{d}{\rightarrow} \frac{g^{(k)}(\theta) \sigma^{k}(\theta)}{k !}\{N(0,1)\}^{k} nk/2{g(Tn)g(θ)}dk!g(k)(θ)σk(θ){N(0,1)}k

:设 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 为 i.i.d.随机变量有均值 μ \mu μ, 方差 σ 2 \sigma^{2} σ2 且有 E ( X 1 4 ) < ∞ \mathrm{E}\left(X_{1}^{4}\right)<\infty E(X14)<。由CMT即Slutsky定理知 n ( S n 2 − σ 2 ) → d N ( 0 , μ 4 − σ 4 ) \sqrt{n}\left(S_{n}^{2}-\sigma^{2}\right) \stackrel{d}{\rightarrow} N\left(0, \mu_{4}-\sigma^{4}\right) n (Sn2σ2)dN(0,μ4σ4)。令 g ( x ) = x g(x)=\sqrt{x} g(x)=x ,由Delta方法可知 n ( S n − σ ) → d N ( 0 , μ 4 − σ 4 4 σ 2 ) \sqrt{n}\left(S_{n}-\sigma\right) \stackrel{d}{\rightarrow} N\left(0, \frac{\mu_{4}-\sigma^{4}}{4 \sigma^{2}}\right) n (Snσ)dN(0,4σ2μ4σ4)

以下给出多元情形Delta方法

定理6.3(Delta方法):设
n ( T n − θ ) → d N p ( 0 , Σ ( θ ) ) \sqrt{n}\left(\boldsymbol{T}_{n}-\boldsymbol{\theta}\right) \stackrel{d}{\rightarrow} N_{p}(\mathbf{0}, \Sigma(\boldsymbol{\theta})) n (Tnθ)dNp(0,Σ(θ)). 令 g : R p ↦ R m \boldsymbol{g}: \mathbb{R}^{p} \mapsto \mathbb{R}^{m} g:RpRm θ \boldsymbol{\theta} θ 可微且有非零梯度 ∇ g ( θ ) \nabla \mathbf{g}(\boldsymbol{\theta}) g(θ)。则 n { g ( T n ) − g ( θ ) } → d N m ( 0 , ∇ ⊤ g ( θ ) Σ ( θ ) ∇ g ( θ ) ) \sqrt{n}\left\{\boldsymbol{g}\left(\boldsymbol{T}_{n}\right)-\boldsymbol{g}(\boldsymbol{\theta})\right\} \stackrel{d}{\rightarrow} N_{m}\left(\mathbf{0}, \nabla^{\top} \boldsymbol{g}(\boldsymbol{\theta}) \Sigma(\boldsymbol{\theta}) \nabla \boldsymbol{g}(\boldsymbol{\theta})\right) n {g(Tn)g(θ)}dNm(0,g(θ)Σ(θ)g(θ))

:设 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 为 i.i.d.随机变量有均值 μ \mu μ, 方差 σ 2 \sigma^{2} σ2 且有 E ( X 1 4 ) < ∞ \mathrm{E}\left(X_{1}^{4}\right)<\infty E(X14)<。则有

n ( X ˉ n − μ S n 2 − σ 2 ) → d N 2 ( ( 0 0 ) , ( σ 2 μ 3 μ 3 μ 4 − σ 4 ) ) \sqrt{n}\left(\begin{array}{c}\bar{X}_{n}-\mu \\ S_{n}^{2}-\sigma^{2}\end{array}\right) \stackrel{d}{\rightarrow} N_{2}\left(\left(\begin{array}{l}0 \\ 0\end{array}\right),\left(\begin{array}{cc}\sigma^{2} & \mu_{3} \\ \mu_{3} & \mu_{4}-\sigma^{4}\end{array}\right)\right) n (XˉnμSn2σ2)dN2((00),(σ2μ3μ3μ4σ4))

:方差平稳变换(VST) g ( θ ) = ∫ 1 σ ( θ ) d θ g(\theta)=\int \frac{1}{\sigma(\theta)} \mathrm{d} \theta g(θ)=σ(θ)1dθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值