具体的软硬件实现点击 MCU-AI技术网页_MCU-AI人工智能
我们提出了一种利用由长短期记忆 (LSTM) 单元构建的深度循环神经网络来降 噪心电图信号 (ECG) 的新方法。该网络使 用动态模型 ECG 生成的合成数据进行预训 练,并使用来自 Physionet PDB 心电图信 号数据库的真实数据进行微调。结果表 明,10层DRNN对于幅值0.2mV白噪声的 真实信号去噪均方误差低至0.179,使其成 为其他常用方法的可行替代方案。我们还 研究了合成数据对真实信号网络性能的影 响。我们的结果表明,无论训练集大小如 何,使用合成数据预训练的网络比仅使用 真实数据训练的网络具有更好的结果。我 们建议通过迁移学习框架和人类认知过程 的类比来解释这一点。
心电图 (ECG) 是一种记录心脏随时间变化 的电活动的过程。测量是通过连接到患 者身体的电极和称为心电图仪的医疗设备来 完成的。如今,通常使用 10 个电极,放置 在胸部和四肢上。对于 10 电极测量,心电图包含 12 个波形,每个 测量角度一个波形,称为"导联"。每个心 电图波形都是一个准循环时间序列。波形上的每个准周期代表一个 心动周期,因此其典型频率在 60 - 100 bpm 之间。周期本身具有称为 P、Q、R、 S、T 的特征组件,对应于心动周期中的特 定事件。其中三个:Q、R 和 S 形成所谓的 QRS 复合体。
ECG 信号容易受到各种噪声的影