深度神经网络进行动态心电图心律不齐的检测和分类

研究建立了大规模心电数据集,开发了一个深度神经网络(DNN)来对12种心律失常进行分类,测试结果显示DNN在心律失常检测和分类中的性能优于心脏病专家,平均F1得分超过心脏病专家的平均值,表明端到端的深度学习方法在心电图分析中展现出高诊断性能,可能提高心电图解释的准确性与效率。
摘要由CSDN通过智能技术生成

Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
Awni Y. Hannun 1,6*, Pranav Rajpurkar 1,6, Masoumeh Haghpanahi2,6, Geoffrey H. Tison 3,6, Codie Bourn2, Mintu P. Turakhia4,5 and Andrew Y. Ng1

**

深度神经网络进行动态心电图心律不齐的检测和分类

**

计算机心电图(ECG)解释在临床心电图工作流程中起着至关重要的作用。文章介绍了一个全面的评估端到端的深度学习方法心电图分析诊断的方法。在这里,我们开发了一个深度神经网络(DNN)来分类12种心律,使用了来自53,549名使用单导联心电图监测装置的患者的91,232个单导联心电图。当使用由委员会认证的执业心脏病专家一致认可的独立测试数据集进行验证时,DNN在受试者工作特征曲线(ROC)下的平均面积为0.97。DNN的平均F1 score(阳性预测值和敏感性的调和平均值)(0.837)超过了心脏病学家的平均值(0.780)。当特异性固定在心脏病学家达到的平均特异性上时,DNN的敏感性超过了所有心律类的心脏病学家的平均敏感性。这些发现表明,端到端的深度学习方法可以从单导联心电图中对多种不同的心律失常进行分类,具有与心脏病学家相似的高诊断性能。如果在临床得到证实,这种方法可以通过对最紧急的情况进行准确的分类或优先处理,降低误诊率,提高专家心电判读的效率。

心电图是临床医学日常实践中的基本工具,全世界每年有超过3亿个ECG获得3。心电图对于诊断从心律不齐到急性冠状动脉综合征的各种异常情况至关重要4。自50年前问世以来,计算机辅助解释在临床ECG工作流程中已变得越来越重要,它是许多临床环境中医生解释的重要辅助手段1。但是,现有的商业ECG解释算法仍然显示出很大的误诊率[1,5-7]。心电图数据的广泛数字化与可从大规模原始数据处理中受益的算法范例的发展相结合,为重新审视算法心电图分析的标准方法提供了机会,并可为自动心电图解释提供实质性的改进。

在过去五年中,算法的重大进步很大程度上是由一类特定的模型(称为深度神经网络)推动的2。DNN是由多个处理层组成的计算模型,每一层都能够学习越来越抽象的、与执行特定任务相关的输入数据的高级表示。它们极大地改善了语言识别、图像识别、围棋等策略游戏以及医疗应用领域的技术水平。DNNs能够从原始输入数据中识别模式和学习有用的特征,而不需要大量的数据预处理、特征工程或手工规则,这使得它特别适合解释心电图数据。此外,由于DNN的性能随着训练数据量的增加而增加,因此这种方法能够很好地利用心电图数据的广泛数字化。

尚缺乏对端对端深度学习方法是否可用于分析原始ECG数据以对各种诊断进行分类的全面评估。以前使用DNN进行ECG解释的大部分工作都集中在ECG处理管道的各个方面,例如降噪13、14或特征提取15、16,或者已经完成了有限的诊断任务,仅检测了少数心跳类型(正常,心室或室上异位,融合等)17-20或心律诊断(最常见的是房颤或室性心动过速)21-25。缺少适当的数据限制了除这些应用程序之外的许多工作。之前的大多数工作都使用了MIT-BIH心律失常数据库(PhysioNet)26的数据,该数据受到数据集中存在的少量患者和节律发作的限制。

在这项研究中,我们建立了一个大的,新的心电数据集,通过专家注释为广泛的心电节律类。我们开发了一种DNN来检测12个心律级别的原始单导联心电图输入,使用的训练数据集包括来自53,549例患者的91,232条心电图记录。设计分类10心律失常以及窦性心律和噪音总数为12个输出节奏类(扩展数据 图1)。心电图监控记录的数据由Zio monitor记录,这是一个食品和药物管理局(FDA)批准的,单导,patch-based动态心电图监测装置27,他能够连续记录数据从一个向量(修改导致II)在200赫兹。在我们的数据集中,Zio监测器的平均穿戴时间为10.6天,中位穿戴时间为13.0天。平均年龄69±16岁,43%为女性。我们在一个测试数据集上对DNN进行了验证,该数据集由328例独特患者的328条心电图记录组成,并由一个由心脏病专家组成的共识委员会进行了注释(见方法)。测试数据集的平均年龄为70±17岁,其中38%为女性。测试数据集上注释者间的平均一致性为72.8%。附表1给出了患者每个心律类型。
在这里插入图片描述

我们首先通过计算AUC(表1a),将DNN的性能与金标准心脏病专家共识委员会的诊断进行了比较。由于DNN算法旨在大约每秒进行一次节奏类预测(请参见“方法”),因此我们报告的性能是每秒评估一次(我们称之为“序列级别”),并且每个间隔由一个节奏类组成,并且一次每个记录,我们称其为“集合级”,由记录中存在的唯一诊断组组成。序列级指标有助于捕获心律失常的持续时间,例如其在记录中的发作和偏移,而集合级指标仅关注记录中是否存在心律失常。对于所有节奏类别,DNN的AUC均大于0.91;在序列水平上,除一个AUC以外,所有AUC均高于0.97。分类加权平均AUC在序列级别为0.978,在集合级别为0.977。该模型显示出较高的AUC,可用于具有较大临床意义的心律不齐,例如AF,房室传导阻滞和室性心动过速。尽管大多数情况下序列级AUC较高,但序列和集合级结果相似。在敏感性分析中,我们使用Hand和Till28所述的方法计算了多类AUC,结果基本不变。补充表2显示了DNN的特异性> 90%时可获得的最大灵敏度,反之亦然。除一个例外,所有敏感性和特异性对均>90%。

除了心脏病专家共识委员会的注释之外,测试数据集中的每条ECG记录还接受了六位独立的心脏病专家的注释,而这些心脏病专家都不属于委员会(请参见“方法”)。使用委员会标签作为黄金标准,我们将DNN算法的F1得分与个人心脏病专家的平均F1得分进行比较,这是阳性预测值(PPV;精度)和灵敏度(召回率)的谐波均值(表1)。心脏病专家F1得分是六位心脏病专家的平均值。 DNN F1得分的趋势倾向于遵循平均心脏病专家F1得分的趋势:在相似的类别(例如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值