
sklearn(Scikit-learn)开源机器学习库
文章平均质量分 97
介绍sklearn(Scikit-learn)开源机器学习库相关的能力
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Scikit-learn(sklearn)机器学习的数据分割方法--重复 K 折RepeatedKFold
本文介绍了重复 K 折交RepeatedKFold数据分割的原理、算法以及在Scikit-learn(sklearn)中的实现,并提供了一个使用案例。RepeatedKFold首先将数据分成 K 个折叠,执行标准的 K-Fold 交叉验证,然后重复这个过程 n 次,每次使用不同的随机分割,每次都会重新随机划分 K 个折叠来提升评估的稳定性和可靠性。原创 2025-08-16 16:15:00 · 751 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--分层K折交叉验证StratifiedKFold
本文介绍了机器学习的数据分割方法--分层K折交叉验证StratifiedKFold的原理以及在sklearn中的实现,并结合案例介绍了StratifiedKFold的使用。老猿认为StratifiedKFold这个方法在kfold的思想基础上,借鉴了train_test_split使用分类标签stratify的场景。原创 2025-08-16 09:01:11 · 633 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--train_test_split和KFold
本文简单介绍了机器学习中的数据分割经常使用的方法,并具体介绍了sklearn中简单随机分割train_test_split、标准K折交叉验证KFold两种具体方法及其使用案例,后续文章将介绍其他几种数据分割方法。需要注意任何基于统计的预处理(如均值填充、标准化)都应仅在训练集上计算参数,再应用到测试集,这样测试集才能起到评估训练后模型的效果。原创 2025-07-20 18:28:51 · 969 阅读 · 0 评论 -
sklearn(Scikit-learn)中的数据集介绍
数据是人工智能工作的燃料,Scikit-learn内置了多种经典数据集,适用于机器学习算法的快速验证、教学和实验。本文详细介绍了每种数据集的功能、加载方法和归属类别,有助于大家快速掌握Scikit-learn的数据集情况,并在进行机器学习时熟练使用。原创 2025-07-13 19:24:50 · 826 阅读 · 0 评论 -
sklearn(Scikit-learn)开源机器学习库介绍
Scikit-learn是 Python 中最受欢迎的开源机器学习库,专为监督学习和无监督学习任务设计。sklearn提供了包括数据预处理、模型训练、模型评估、实用工具等相关能力,并内置机器学习常见的数据集。但因为其局限性scikit-learn 不支持复杂的机器学习任务(如深度学习)、不支持深度学习、不适合超大规模数据, 对非结构化数据处理能力弱。本文就sklearn(Scikit-learn)开源机器学习库的功能、主要能力等相关内容简单做了个介绍,后续文章将展开详细介绍相关能力。原创 2025-07-13 15:30:00 · 760 阅读 · 0 评论 -
scikit-learn依赖的高效序列化(保存/加载)和并行计算的Python joblib库
joblib 是一个用于 Python 的轻量级流水线工具库,是机器学习工程师和数据科学家的必备工具,特别适合模型持久化、并行加速、大数据处理、快速磁盘缓存。本文介绍了joblib的功能、安装,并结合案例介绍了主要的API能力。原创 2025-07-13 08:48:28 · 1218 阅读 · 0 评论