Qwen打包部署(大模型转换为 GGUF 以及使 用 ollama 运行)

大模型转换为 GGUF(linux环境)

1、将hf模型转换为GGUF
1.1 需要用llama.cpp仓库的convert_hf_to_gguf.py脚本来转换
git clone https://github.com/ggerganov/llama.cpp.git
pip install -r llama.cpp/requirements.txt
1.2 执行转换
# 如果不量化,保留模型的效果
python llama.cpp/convert_hf_to_gguf.py ./Meta-Llama-3-8B-Instruct --outtype f16
--verbose --outfile Meta-Llama-3-8B-Instruct-gguf.gguf
# 如果需要量化(加速并有损效果),直接执行下面脚本就可以
python llama.cpp/convert_hf_to_gguf.py ./Meta-Llama-3-8B-Instruct --outtype
q8_0 --verbose --outfile Meta-Llama-3-8B-Instruct-gguf_q8_0.gguf
这里--outtype是输出类型,代表含义:
q2_k:特定张量(Tensor)采用较高的精度设置,而其他的则保持基础级别。
q3_k_l、q3_k_m、q3_k_s:这些变体在不同张量上使用不同级别的精度,从而达到性能和效率的平衡。

q4_0:这是最初的量化方案,使用 4 位精度。

q4_1 和 q4_k_m、q4_k_s:这些提供了不同程度的准确性和推理速度,适合需要平衡资源使用的场景。

q5_0、q5_1、q5_k_m、q5_k_s:这些版本在保证更高准确度的同时,会使用更多的资源并且推理速度较
慢。

q6_k 和 q8_0:这些提供了最高的精度,但是因为高资源消耗和慢速度,可能不适合所有用户。

fp16 和 f32: 不量化,保留原始精度。
1.3 转换后的模型

2. 使用ollama运行gguf

2.1 安装ollama
curl -fsSL https://ollama.com/install.sh | sh
2.2 启动ollama服务
ollama serve
2.3 创建ModelFile

复制模型路径,创建名为“ModelFile”的meta文件,内容如下

#GGUF文件路径
FROM /root/autodl-tmp/Llama3-8B/LLM-Research/Meta-Llama-3-8B-Instruct-gguf8.gguf
2.4 创建自定义模型

使用ollama create命令创建自定义模型

ollama create llama-3-8B-Instruct --file ./ModelFile
2.5 运行模型:
ollama run llama-3-8B-Instruct

大模型转换为 GGUF(windows环境)

1、将hf模型转换为GGUF
1.1 需要用llama.cpp仓库的convert_hf_to_gguf.py脚本来转换
git clone https://github.com/ggerganov/llama.cpp.git
### 需要cd进入到llama.cpp/requirements.txt目录,然后在安装
pip install -r llama.cpp/requirements.txt
1.2 执行转换
# 如果不量化,保留模型的效果
python "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\llama.cpp\convert_hf_to_gguf.py" "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\models\Qwen\Qwen2___5-1___5B-Instruct-merge" --outtype f16 --verbose --outfile "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\models\Qwen\Qwen2___5-1___5B-Instruct-merge-gguf.gguf"

在这里插入图片描述

# 如果需要量化(加速并有损效果),直接执行下面脚本就可以
python llama.cpp/convert_hf_to_gguf.py ./Meta-Llama-3-8B-Instruct --outtype
q8_0 --verbose --outfile Meta-Llama-3-8B-Instruct-gguf_q8_0.gguf

python "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\llama.cpp\convert_hf_to_gguf.py" "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\models\Qwen\Qwen2___5-1___5B-Instruct-merge" --outtype q8_0 --verbose --outfile "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\models\Qwen\Qwen2___5-1___5B-Instruct-merge-ggufq8.gguf"

在这里插入图片描述

这里--outtype是输出类型,代表含义:
q2_k:特定张量(Tensor)采用较高的精度设置,而其他的则保持基础级别。
q3_k_l、q3_k_m、q3_k_s:这些变体在不同张量上使用不同级别的精度,从而达到性能和效率的平衡。

q4_0:这是最初的量化方案,使用 4 位精度。

q4_1 和 q4_k_m、q4_k_s:这些提供了不同程度的准确性和推理速度,适合需要平衡资源使用的场景。

q5_0、q5_1、q5_k_m、q5_k_s:这些版本在保证更高准确度的同时,会使用更多的资源并且推理速度较
慢。

q6_k 和 q8_0:这些提供了最高的精度,但是因为高资源消耗和慢速度,可能不适合所有用户。

fp16 和 f32: 不量化,保留原始精度。
1.3 转换后的模型

2. 使用ollama运行gguf

官网下载安装就行

2.2 启动ollama服务

双击就可以了
在这里插入图片描述

2.3 创建ModelFile

复制模型路径,在本地创建名为“ModelFile”的meta文件,内容如下

#GGUF文件路径
FROM "D:\Program Files\python\PycharmProjects\AiStudyProject\demo07\models\Qwen\Qwen2___5-1___5B-Instruct-merge-gguf.gguf"


2.4 创建自定义模型

使用ollama create命令创建自定义模型

ollama create qwen2.5-1.5B-Instruct --file "D:/Program Files/python/PycharmProjects/AiStudyProject/demo07/ModelFile"

如下图安装好了不量化的模型
在这里插入图片描述
量化的模型

ollama create qwen2.5-1.5B-Instruct-q8 --file "D:/Program Files/python/PycharmProjects/AiStudyProject/demo07/ModelFile"

在这里插入图片描述
同样查看一下
在这里插入图片描述

2.5 运行模型:
ollama run qwen2.5-1.5B-Instruct:latest
ollama run qwen2.5-1.5B-Instruct-q8:latest
2.6运行open-webui看效果

如图我们自己训练的大模型就有了
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值