风控策略导图整理

这篇博客介绍了风控策略的详细框架,涵盖准入、反欺诈、信用评分、人行征信、额度、行为评分和催收评分等方面。在反欺诈策略中,涉及身份核实、要素验证和反欺诈模型,包括黑名单、多头借贷等。信用评分模型考虑了多头类、社交关联类、经济能力类等数据。额度模型重点关注收入、多头结合学历等因素。行为评分和催收评分则涉及客户还款行为、关联性数据等。
摘要由CSDN通过智能技术生成

       前几天在群里看到一张风控策略框架的脑图,文档为18年的,觉得整理得很棒,于是将脑图中的内容搬运下来记录成文章。

       这张风控策略导图一共涉及准入、反欺诈、信用评分、人行征信、额度、行为评分和催收评分这几块。之前整理过一篇策略类的文章:最全贷前策略整理

 

一、政策准入

       准入阶段使用自有数据做规则,数据服务商提供的数据后置。

1.年龄

      确定年龄段和是否为学生群体。

2.职业

      主要来自人行征信职业,但并不准确,一般需要工资为代发放。特定职业不做或者限额。

3.地域

       新疆、西藏、青海以及其他特定敏感或者高风险区域不做。

4.学历

       学信网可查。

5.行业

       特定行业不做或者限额。比如单位名称中含有"贷"字。

6.民族

       可考虑汉族及部分少数民族通过,其余少数民族有学历的通过。

 

二、反欺诈

       反欺诈分为身份核实、要素验证(银行卡、运营商)以及反欺诈策略和模型。

 

2.1反欺诈-身份核实

       优先用活体识别+公安联网核查,如果没有公安联网核查则使用活体识别+人证对比+实名认证。

1.活体识别:

如:FACE++人脸比对结果小于误识率为0.00001的置信度阈值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值