graph neural network笔记

本文深入探讨了Graph Neural Networks(GNN),包括其在结构分类、分子生成和关系推理等任务中的应用。介绍了Spatial-based GNN如GraphSAGE、GAT和GIN,以及Spectral-based GNN如ChebNet和GCN。此外,还讨论了基准任务,如图分类、分子属性预测和旅行商问题,并提到了基于VAE、GAN和AR的图生成模型。
摘要由CSDN通过智能技术生成

intro

graph:节点和路径组成的结构
gnn:如果把graph当成输入,如何表述它的结构和数据
应用:分类:某种结构的有机物是否导致突变
生成:根据要求生成指定特色的药物分子结构
判断:破案时利用人际关系信息

method

spatial-based

aggregate:用neighbor feature 来update 每个点的state
readout: 把所有node feature合起来代表整个 graph

1.NN4G
aggregate:用邻居和自己特征值的加权和来update自己的特征值。
readout:每次更新后对graph中所有node求均值,对各代graph求加权和

2.DCNN
aggregate:第二层求距离为一的邻居均值,第三层求距离为二的邻居均值
readout:对三层求加权和

3.MoNET :
邻居之间也有不同权重了:定义边的距离,与节点度数degree有关

4.GraphSAGE:
aggregate:随机sample序列,放入lstm,把hidden state当成输出(好吧结果很一般)

5.GAT:
aggregate:通过两个节点的值计算两个节点之间的attention,以此为权重求和(最受欢迎)

6.GIN:
理论证明:sum instead of mean or max(因为引入了数目信息)

spectral-based

前置知识:傅里叶变换,离散傅里叶,奇异值分解,图的拉普拉斯矩阵
(我也不是很懂)

1.ChebNet
图的拉普拉斯矩阵L表示了点之间的影响关系,如果把图看成一个滤波器,滤波器矩阵可以表示为L的多项式g(L),其中L的阶数越高,节点彼此的影响传播的更远。g(L)中的系数是可学习参数
ChebNet为了降低运算量使用了Chebyshev多项式,迭代计算。

2.GCN
在ChebNet基础上把g(L)指定为一次,然后推导出了形似神经网络的方式,即y=f(Wx+b),这里Wx+b需要对网络中所有点求均值。(最受欢迎)

benchmark task

1.mnist和cifar10:对图片做superpixel,以它为节点生成graph,根据graph进行图片分类
2.zinc:分子形成的graph,大概有9-37节点,预测分子溶解度等
3.sbm:人工形成的图,判断图中是否存在指定结构/子图(graph pattern rocognition),半监督的图聚类(semi-supervised graph clustering)
4.TSP:traveling salesman problem,寻找一条路线,不重复的遍历每一个点

graph generation

VAE based model
GAN based model
AR based model

网址 https://www.youtube.com/watch?v=eybCCtNKwzA&t=1079s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值