AI医药论文笔记DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug....

DeepDDS是一个结合图卷积网络(GCN)和注意力机制的深度学习模型,用于预测药物组合的协同效应。通过药物分子图和癌细胞基因表达谱的特征嵌入,该模型在识别协同用药方面表现优越。实验表明DeepDDS超越了传统机器学习和现有深度学习方法。未来的研究将关注提高模型的可解释性和预测准确性。
摘要由CSDN通过智能技术生成

DeepDDS:具有注意机制的深度图神经网络预测协同用药

一、模型?

DeepDDS :基于图卷积网络注意力机制的深度学习模型,以识别能够有效抑制特定癌细胞生存能力的药物组合。
在这里插入图片描述

  • 步骤:

    • 通过多层感知 MLP获得癌细胞基因表达谱的特征嵌入。
    • 基于药物SMILES生成的药物分子图,通过GAT或GCN获得药物的特征嵌入
    • 将药物和细胞株的嵌入向量连接送到多层全连接网络中,预测协同效应,实现药物组合的二元分类(协同或拮抗)。
  • 数据集:

    • 药物:DrugBank中提取SMILES。通过RDKit转换为图结构。
    • 肿瘤细胞:基因表达数据来源于CCLE

二、具体方法?

  • GCN

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值