2025版最新大模型微调终极指南,零基础入门到精通,收藏这篇就够了

今天给大家带来一篇大模型微调相关的最新综述,主要大模型微调归纳为7个阶段分别为数据准备、模型初始化、训练环境配置、模型微调、模型评估与验证、模型部署以及模型监控与维护。

Paper: https://arxiv.org/abs/2408.13296   

模型微调(Fine-Tuning)就是以预训练模型为基础,通过相对较少的特定数据集进行的进一步训练,主要是在模型预先存在的知识之上用过减少数据和计算成本来提高特定任务的效果。

模型预训练与微调之间差距

大模型微调的优势:

  • 迁移学习:利用预训练过程中获得的知识,通过减少计算时间和资源,将其适应于特定任务

  • 减少数据需求:需要较少的标注数据,专注于将预训练的特征调整到目标任务

  • 改善泛化能力:增强了模型对特定任务或领域的泛化能力,捕捉通用语言特征并对其进行定制

  • 高效的模型部署:微调后的模型更适合实际应用,计算效率高,适合特定任务

  • 适应各种任务:能够适应广泛的任务,在各种应用中表现良好

  • 特定领域的性能:允许模型通过调整目标领域的细微差别和词汇,从而在特定领域的任务中表现出色

  • 更快收敛:从通用语言特征的权重开始训练,能够更快地收敛

虽然,很多任务通过提示工程或RAG技术可能完美解决,但如果你需要模型调整其行为、写作风格或融入特定领域的知识,那么微调仍然是必不可少的。

下面从7个不同阶段来详细介绍大模型微调所要准备的工作。

数据准备

  • 高质量数据收集:确保数据的高质量、多样化和代表性,确保数据在不同场景下的全面覆盖,以增强模型的鲁棒性;

  • 有效的数据预处理:去除噪声、错误和不一致性的数据对于模型至关重要;

  • 数据不平衡处理:过采样、欠采样和SMOTE等技术有助于平衡数据集;

  • 数据增强和合成:采用数据增强手段对数据集扩充但需要确保数据标注的一致性;同时利用提示工程或多步生成的方式合成数据;

  • 道德数据处理:审查数据中有害或有偏见的内容,以防止模型输出有害结果;

  • 定期评估和迭代:持续评估和迭代数据准备流程,利用反馈循环和性能指标确保持续改进并适应新的数据需求。

模型初始化

在该阶段主要配置环境、安装依赖项、选择合适的大模型、下载对应的模型、预先在特定任务执行模型。

在模型选择时,需要考虑选择的模型与目标任务的一致性如何、模型的可用性和兼容性、模型的架构、资源的限制等等。

训练设置

主要是在模型训练过程中设置优化器、损失函数、参数调节。

  • 学习率调节:一般使用较低的学习率,采用学习率预热也会有益;

  • Batch大小:一般更大的Batch可以获得更好的效果,但需要选择一个平衡显存限制和训练效率的Batch大小;

  • 定期保存检查点:不同间隔定期保存模型权重,实施及早停止测略,防止模型过拟合;

  • 数据并行和模型并行:考虑使用数据并行或模型并行技术,将训练工作负载分布在多个GPU或TPU上;

  • 定期监控和记录:踪训练指标、资源使用和潜在瓶颈,可以用TensorBoard、Weights & Biases、MLflow等工具;

  • 混合精度训练:以减少内存使用并提高计算效率,可以显著加快训练速度并减少所需的内存占用;

  • 评估和迭代:使用单独的验证集不断评估模型性能,并根据结果对训练过程进行迭代;

  • 模型可重复:通过设置随机种子并提供训练过程的详细记录来确保可重复性,有助于调试和进一步开发。

微调技术

主要有特定任务的微调、特定领域的微调、参数高效微调、半微调、偏好对齐、MoE、MOA等。

参数高效微调

评估和验证

有效评估LLMs需要根据模型性能的各个方面指定一些特殊的评价指标:

  • 困惑度:衡量概率分布或模型预测样本的程度

  • 事实性:评估LLM所提供信息的准确性

  • LLM不确定性:利用每个生成令牌的对数概率,衡量模型输出文本的置信度

  • 提示困惑度:评估模型对输入提示的理解程度

  • 上下文相关性:衡量检索到的上下文与用户查询的相关性

  • 完整性:评估模型的响应是否根据提供的上下文完全回答了查询

  • Chuk归属和利用:评估检索到的信息块对最终响应的贡献效果如何

  • 数据错误潜力:量化了模型在学习训练数据时面临的困难,数据质量越高,错误潜力越低

  • 安全指标:确保LLM的输出适当且无害

评测榜单

安全性评测指标

模型部署

本地部署、云平台部署、分布式部署、模型量化等。

模型监控

性能监控、准确性监控、错误监控、日志分析、警报机制、反馈循环、安全监控、模型版本控制、提示词监控、输出结果监控、LLM知识更新等。

详细内容可阅读原Paper。

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值