【2025】大模型预训练之数据预处理,从零基础到精通,精通收藏这篇就够了!

训练数据的好坏,直接影响到大模型的推理质量**”**

影响大模型质量的原因除了机器学习模型(模型的架构)的之外,更重要的一点就是大模型的训练数据。从某些方面来说,训练数据的质量直接决定大模型的好坏。

那么怎么才能从繁杂的数据中梳理出一批高质量的训练数据是一个值得考虑的问题。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

大模型训练数据的准备

准备一个合格的大模型训练数据集是一个关键且复杂的过程,直接影响到模型的表现。

下面是详细的步骤,以及需要注意的点:

确定任务目标

有句老话叫:“有的放矢”,首先要明确你的任务和目标,才能知道你需要什么样的数据,然后应该怎么准备数据,这是一切的开始。‍‍‍

任务类型:明确模型需要解决的任务类型,如文本生成,图像处理,语义理解等‍

目标:确定模型的预期输出,定义准确度,精度等评价标准‍‍

数据收集

数据收集同样包括多个方面,比如数据来源,数据的多样性,数据量等。‍‍‍‍‍‍‍‍

数据来源:数据来源包括公开数据集,如维基百科,网络论坛等;企业内部数据集,利用公司内部的日志,文档,数据库等;还有就是自采集数据集,如网络爬虫,接口(API)等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

数据多样性:确保数据覆盖足够广泛的场景和样本,避免模型过拟合特定领域‍‍‍‍

数据量:大模型通常需要海量数据,通常在百万级以上;因此数据存储也是一个问题‍‍‍

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

_数据清洗_‍‍

数据清洗是数据处理中的重要环节,由于数据源头不一,直接导致数据质量参差不齐,因此必须要做好数据清洗。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

去重:移除重复的样本,确保数据多样性‍

去噪:过滤掉无意义的数据,如广告,拼写错误,噪声图像等‍‍‍‍‍‍‍‍‍

统一格式:确保所有数据采用一致的编码格式(如UTF-8),并且统一时间,日前等标准格式‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

数据修复:修正数据中的错误,如拼写,补全等‍‍‍

数据标注

数据标注需要注意多种情况,标注类型,标注质量,一致性检查等。‍

标注类型有文本标注,如命名体识别,情感分析等;图像标注,如物体边界框,图像分类标签等‍‍‍

标注质量:使用自动化工具初步标注,然后进行人工审核和修正

一致性检查:确保标注的一致性和准确性,尤其是多人标注时‍

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

数据增强

文本增强:如同义词转换,数据回译,随机插入和删除单词等‍‍

图像增强:如旋转,裁剪,颜色调整等‍‍

目的:通过数据增强来增加样本多样性,提高模型等泛化能力

_数据分割_‍

数据集要分为训练集,验证集和测试集,通常按8:1:1的比例分割数据,确保数据集之间没有交叉‍‍‍‍‍‍‍‍‍‍‍‍

平衡性:确保各个数据集中类别分布的一致性,避免类别不平衡问题‍‍‍

_数据处理与转换_‍

文本处理:文本处理分为分词和词嵌入两种形式。

分词:根据任务要求选择适当的分词工具(如BPE,WordPiece);

词嵌入:将分词后的文本转换为向量(如Word2Vec,GloVe等)

图像处理:图像处理也有两种方式,归一化和尺寸调整‍‍

归一化:将像素值归一化到一个合理的范围‍‍‍

尺寸调整:统一图像尺寸,便于批处理

特征提取:特征提取是根据任务需求提取特征,如文本的n-gram特征或图像的边缘化特征‍‍‍‍

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

数据存储与管理

存储格式:文本使用json,csv,parquet等格式;图像使用jpeg,png等格式‍‍‍‍‍

存储系统:使用HDFS,S3,数据仓库/数据湖等分布式存储系统来管理大规模数据‍‍‍‍‍‍‍‍‍‍

版本控制:对数据集进行版本控制,确保每次实验的可重复性

数据隐私与合规性

隐私保护:确保数据处理过程中遵循数据隐私法规(如GDPR)。

合规性:数据的收集、存储和使用必须符合相关法律法规

数据加载和预处理

数据加载器:实现高效的数据加载机制,如PyTorch的DataLoader或TensorFlow的tf.data。

在线预处理:在加载数据时进行必要的预处理操作,如归一化、标准化等

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

注意事项

数据偏差:确保数据的代表性,避免模型学习到偏见或不平衡。

质量控制:持续监控数据质量,定期清理和更新数据集。

标注一致性:标注工作中应保持一致性,避免同一类问题不同处理方式。

隐私与合规性:在所有数据处理阶段都应严格遵守相关法规,确保数据安全

基于文本数据训练的大模型,实现的人工智能聊天机器人:‍‍‍‍‍‍‍‍‍‍‍‍‍‍

总结

通过精心设计的步骤和严格的质量控制,可以确保大模型的训练数据高质量、多样性和合法性,从而为后续模型训练提供坚实的基础

  ## AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值