监督学习
- 在有标记数据集上训练
非监督学习
- 在没有标记的数据集上训练
半监督学习
- 利用既有标记数据和未标记数据进行学习
- 先在有标记数据集上学习,然后利用未标记数据的信息来提高模型性能
- 这个过程可以迭代多次,直到模型收敛或达到特定性能
优点
- 减少需要标记数据的数量,尤其在标记数据耗时昂贵的情况下
- 利用大规模未标记数据提高小规模标记数据集上的模型性能
- 可以帮助解决类别不平衡的问题,很少标记的样本,通过大量未标记数据来提高类别性能
算法:
基于生成模型:
- 假设:所有数据无论标记与否都是由同一个潜在模型生成的
- 算法:GAN,VAE
基于低密度分离:
- 假设:样本在高维空间中呈现低密度分离的结构,然后利用这种结构将已标记数据和未标记数据进行分类。
- 算法:S3VM
基于标签传播:
- 假设:相似的样本拥有相似的标签
- 算法:基于图的半监督学习