西瓜书第十三章 —— 半监督学习

监督学习

  • 在有标记数据集上训练

非监督学习

  • 在没有标记的数据集上训练

半监督学习

  • 利用既有标记数据和未标记数据进行学习
  • 先在有标记数据集上学习,然后利用未标记数据的信息来提高模型性能
  • 这个过程可以迭代多次,直到模型收敛或达到特定性能

优点

  • 减少需要标记数据的数量,尤其在标记数据耗时昂贵的情况下
  • 利用大规模未标记数据提高小规模标记数据集上的模型性能
  • 可以帮助解决类别不平衡的问题,很少标记的样本,通过大量未标记数据来提高类别性能

算法:

基于生成模型:

  • 假设:所有数据无论标记与否都是由同一个潜在模型生成的
  • 算法:GAN,VAE

基于低密度分离:

  • 假设:样本在高维空间中呈现低密度分离的结构,然后利用这种结构将已标记数据和未标记数据进行分类。
  • 算法:S3VM

基于标签传播:

  • 假设:相似的样本拥有相似的标签
  • 算法:基于图的半监督学习

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值