转载自:http://blog.sina.com.cn/s/blog_3eefe0890102x39j.html 吕陈君
最后来讲讲连续统假设CH。只要采用集合论来解析数学基础,必然就会碰到CH问题:实数的个数2^w究竟等于哪个阿列夫Wn。如果你不采用集合论,当然就碰不到CH,但你必然会碰上别的什么问题,它其实也等价于CH。
数学基础最核心的问题就是,如何确定自然数和实数的结构关系。从古希腊人发现无理数以来,这个问题贯穿了整个数学史。CH就是在集合论下,如何来确定自然数和实数的结构关系。
现在我们知道,CH在现有的集合论公理系统ZFC中是不可判定的。但大多数数学家相信,这是由于ZFC自身还不完善导致的。人们倾向于在ZFC基础上去寻找一些新公理来判定CH。
但我的看法是,上述研究方向是走不通的。原因很简单,因为ZFC自身还有缺陷,还不完善。与其是去寻找一些新公理,还不如去夯实ZFC的基础。
哥德尔和柯恩其实都有这种想法,譬如,哥德尔就认为需要重新考虑“一一对应”和“基数”的概念。王浩跟晚年的哥德尔接触最多,因此对这个问题的论述也是最全面的,他指出,目前集合论“至少包含四个困难的观点:‘给定’的观点、汇集在一起的观点、‘部分’或子集的观点和层叠的观点”,“我们只有首先确定在哪些一一对应的基础上,哪些对象要被计数(哪些整数集是被允许的),然后才能解决这个问题(注:指CH)”。
柯恩的想法就要复杂一些。他有时也认为,CH跟几何学上的平行公理相似,这样就可能存在几种不同的集合论,在其中CH可以成立也可以不成立(这种观点后来影响颇大)。但柯恩自己对这种主张其实并不坚定,态度比较犹豫。
哥德尔的态度倒是非常坚定,认为在新系统中, CH完全可以判定,而且是否定性的。柯恩也倾向于否定性的结论。
下面就来讲讲2^w究竟等于哪个Wn?又如何来证明的?这个证明的关键在于,我们要把W的某些子集合排列成一个良序集合G(W),然后又同样把G(W)的某些子集合排列成更大的一个良序集合G(G(W)),这样就可以形成一些列的层叠集合序列:
W,G(W),G(G(W)),……
我们可以证明如下两个基本的定理:
定理1:G(W),G(G(W)),……的基数依次等于阿列夫W1,W2,……,它们是逐次增大的。
定理2:W1,W2,……都小于2^w。
也就是说,所有的阿列夫Wn都小于2^w。
这个结论其实跟柯恩的猜测完全一致。我把柯恩的原话摘录如下:“由构造幂集提供的连续统,不是用以替换公理为基础从较低的基数出发构造较高的基数的任何过程可达到的。这样,2^w将被认为大于W1,W2,Wn……的基数”。
这个结论会给数学基础带来革命性的影响。它说明,我们从自然数出发,利用不断“+1”的递归构造方法永远也无法穷尽所有的实数。
所以,现有的实数理论都不完备。现有的实数定义其实都是非构造性的,无论是对角线法、戴德金分割、区间套定理、还是2^w>w的证明,都是用反证法来证明的。但由于哥德尔不完备性定理,所以在实数域上,反证法其实并不严格成立,所以,当一个算术(实数)反命题不成立时,并不等于其正命题就成立。
但是,在数学分析和数学证明中,我们又不得不经常使用反证法,否则,绝大多数定理都无法证明。究竟什么时候可以使用反证法,什么时候不可以使用,我们完全是凭自己的数学经验来决定的。幸好,绝大多数情况下,我们都会做对。
菲尔兹奖得主高尔斯网上有一篇文章,专门谈反证法,他说这个“在我脑海里思考了很久的问题,但我发现它比我预想的更难”,最后他的建议就是:“反证法是一个非常有用的工具,但是尽量不要使用它,除非你不得不用它。”此时,我们就要朗诵起希尔伯特的箴言:“禁止数学家使用排中律,就像禁止天文学家使用望远镜和拳击家使用拳头一样。”
所以,数学,从本质上讲,就是一门经验的科学。数学体系跟经济、法律、政治体系是相似的,人们都知道这些体系并不完善、完美,都有自身的缺陷,但在还没有发现问题之前,人们照样使用这些体系。只有当出现问题时,人们才会试图去修改、完善这些体系。数学也是如此。