多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012
本文将作为我《从零开始做OpenCL开发》系列文章的第一篇。
1 异构计算、GPGPU与OpenCL
OpenCL是当前一个通用的由很多公司和组织共同发起的多CPU\GPU\其他芯片 异构计算(heterogeneous)的标准,它是跨平台的。旨在充分利用GPU强大的并行计算能力以及与CPU的协同工作,更高效的利用硬件高效的完成大规模的(尤其是并行度高的)计算。在过去利用GPU对图像渲染进行加速的技术非常成熟,但是我们知道GPU的芯片结构擅长大规模的并行计算(PC级的GPU可能就是CPU的上万倍),CPU则擅长逻辑控制,因此不只局限与图像渲染,人们希望将这种计算能力扩展到更多领域,所以这也被称为GPGPU(即通用处计算处理的GPU)。
简单的说,我们的CPU并不适合计算,它是多指令单数据流(MISD)的体系结构,更加擅长的是做逻辑控制,而数据处理基本是单流水线的,所以我们的代码for(i=0;...;i++)这种在CPU上要重复迭代的跑很多遍,但是你的显卡GPU则不是这样,GPU是典型的单指令多数据(SIMD)的体系结构,它不擅长逻辑控制,但是确实天生的向量计算机器,对于for(i=0;...;i++)这样的代码有时只需要跑一遍,所以图形世界中那么多的顶点、片段才能快速的并行在显卡中渲染处理
GPU的晶体管可以到几十亿个,而CPU通常只有几个亿,
如上图是NVidia Femi100的结构,它有着大量的并行计算单元。
所以人们就想如何将更多的计算代码搬到GPU上,让他不知做rendering,而CPU只负责逻辑控制,这种一个CPU(控制单元)+几个GPU(有时可能再加几个CPU)(计算单元)的架构就是所谓的异构编程(heterogeneous),在这里面的GPU就是GPGPU。异构编程的前景和效率是非常振奋人心的,在很多领域,尤其是高并行度的计算中,效率提升的数量级不是几倍,而是百倍千倍。
其实NVIDIA在很早就退出了利用其显卡的GPGPU计算 CUDA架构,当时的影响是很大的,将很多计算工作(科学计算、图像渲染、游戏)的问题提高了几个数量级的效率,记得那时NVIDIA来浙大介绍C