坐标变换(1)—向量和坐标系

1. 标量

在介绍向量之前,有必要介绍一下标量(scalar),标量是一个数字,只有大小,没有方向(不过有正负)。例如温度,重量等。

2. 向量

向量(vector)是多个数字组成的列表。 n n n个有次序的数 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn所组成的数组列表称为 n n n维向量。
向量可以有两种方式去描述:

  1. 空间中的一个点,而有次序的数字可以确定点在空间中的位置;
  2. 将向量描述为有大小方向的一个量,例如一辆正在行驶的自动驾驶车辆的速度为正东方向 50 k m / h 50km/h 50km/h。这时候向量就是一个从坐标原点指向终点(由有次序的数字确定)的一个矢量。

如下向量 [ 4 3 ] T \left[\begin{array}{l} {4} & {3} \end{array}\right]^{T} [43]T

3. 线性空间

V V V为一个非空集合, R R R为实数域(这里只讨论实数域)。如果对于任意两个元素 α , β ∈ V \alpha,\beta\in V α,βV,总有唯一的元素 γ ∈ V \gamma \in V γV与之对应,则称为 α , β \alpha,\beta α,β的和,记为 γ = α + β \gamma = \alpha+\beta γ=α+β。对于任意数 λ ∈ R \lambda \in R λR与任意元素 α ∈ V \alpha \in V αV,总有唯一的一个元素 δ ∈ V \delta \in V δV与之对应,称为 λ \lambda λ α \alpha α的积,记为 δ = λ α \delta = \lambda\alpha δ=λα,并且和与积两种运算满足以下8条运算规则(设 α , β , γ ∈ V \alpha,\beta,\gamma\in V α,β,γV λ , μ ∈ R \lambda,\mu\in R λ,μR):

  1. α + β = β + α \boldsymbol{\alpha}+\boldsymbol{\beta}=\boldsymbol{\beta}+\boldsymbol{\alpha} α+β=β+α
  2. ( α + β ) + γ = α + ( β + γ ) (\boldsymbol{\alpha}+\boldsymbol{\beta})+\boldsymbol{\gamma}=\boldsymbol{\alpha}+(\boldsymbol{\beta}+\boldsymbol{\gamma}) (α+β)+γ=α+(β+γ)
  3. V V V中存在 0 0 0元素,对任意 α ∈ V \alpha\in V αV,都有, α + 0 = α \alpha+0=\alpha α+0=α
  4. 对任意 α ∈ V \alpha \in V αV,都有 α \alpha α的负元素 β ∈ V \beta \in V βV,使 α + β = 0 \boldsymbol{\alpha}+\boldsymbol{\beta}=\mathbf{0} α+β=0
  5. 1 α = α 1 \alpha=\alpha 1α=α;
  6. λ ( μ a ) = ( λ μ ) a \lambda(\mu \boldsymbol{a})=(\lambda \mu) \boldsymbol{a} λ(μa)=(λμ)a;
  7. ( λ + μ ) α = λ α + μ a (\lambda+\mu) \boldsymbol{\alpha}=\lambda \boldsymbol{\alpha}+\mu \boldsymbol{a} (λ+μ)α=λα+μa;
  8. λ ( α + β ) = λ α + λ β \lambda(\boldsymbol{\alpha}+\boldsymbol{\beta})=\lambda \boldsymbol{\alpha}+\lambda \boldsymbol{\beta} λ(α+β)=λα+λβ

那么 V V V称为实数域 R R R上的线性空间(向量空间), V V V中的元素称为(实)向量。线性空间中,对加法和数乘两种运算封闭

4. 维数,基和坐标

在线性空间 V V V中,如果存在 n n n个元素 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an,满足:

  1. a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an线性无关;
  2. V V V中任意元素可由 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an线性表示。

则称 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an为线性空间 V V V的一组 n n n称为线性空间 V V V维数

因为 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an是一组基,所以线性空间 V V V中任意的元素 α \alpha α,总有且仅有一组有序数字 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,使得,

α = x 1 α 1 + x 2 α 2 + ⋯ + x n α n \boldsymbol{\alpha}=x_{1} \boldsymbol{\alpha}_{1}+x_{2} \boldsymbol{\alpha}_{2}+\cdots+x_{n} \boldsymbol{\alpha}_{n} α=x1α1+x2α2++xnαn

x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn这组有序数字就称为元素 α \alpha α在基 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an下的坐标,记做,

α = ( x 1 , x 2 , ⋯   , x n ) T \boldsymbol{\alpha}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\mathrm{T}} α=(x1,x2,,xn)T

当然这个坐标也就是最开始提到的向量,而也就是经常提到的坐标系,不同的坐标系只是对应了不同的基。

以三维线性空间为例,任何三个线性无关的向量都能构成一组基,都对应一个坐标系。同一个向量在不同的基下的坐标不同,也就是在不同的坐标系下的描述不同(但向量是同一个)。

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
要进行坐标系之间的转换,需要使用旋转矩阵和平移向量。根据给定的三个点在两个坐标系下的坐标,可以通过以下步骤求解转换参数。 1. 首先,选择其中一个点作为世界坐标系的原点,并将其在相机坐标系中的坐标作为平移向量T。这个平移向量描述了世界坐标系到相机坐标系的平移关系。 2. 接下来,使用另外两个不共线的点来构建旋转矩阵R。旋转矩阵描述了世界坐标系到相机坐标系的旋转关系。具体步骤可以通过计算两个坐标系中的向量之间的旋转变换得到。 3. 如果没有现成的矩阵相乘函数,可以自己编写代码实现矩阵相乘的功能。初始时可以使用数组存放矩阵,但后续考虑到方便性和可扩展性,可以转换思路,使用vector动态存放数组,这样可以更方便地进行矩阵的计算,并适应后续用户增加顶点操作的需求。 通过以上步骤,可以得到坐标系之间的旋转矩阵R和平移向量T,从而实现坐标系之间的转换。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [三点解算两个坐标系之间的旋转矩阵和平移向量](https://download.csdn.net/download/yangzhe1215/12449123)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [原理详解_三点解算两个坐标系之间的旋转矩阵和平移向量](https://download.csdn.net/download/zhangxz259/10815707)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [基于OpenGL的计算机图形学实验四简单几何形体(三角形、多边形等)的平移、缩放、旋转等几何变换(完整可...](https://download.csdn.net/download/weixin_53249260/88236610)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值