向量、坐标和坐标系之间的关系:

向量包含方向和大小,没有坐标的概念,而且向量与坐标系无关,不会因为坐标系改变而改变。只有当我们在某个坐标系中去描述向量时,二者才产生联系,此时我们默认向量的起点为该坐标系原点,然后才能用该向量终点在该坐标系中的坐标去表示该项量

向量、坐标和坐标系之间的关系:

坐标系:

指的是三个基向量作为列向量组成的矩阵叫做坐标系,这三个基向量表示三个坐标轴,如果这三个坐标轴垂直(正交、点乘为0),也就是三个向量线性无关,三维空间中任何一个向量都可以用这个三个基向量线性表示,即三个线性无关的向量的所有线性组合就是整个三维空间。

向量:

书上说的就是一组有序数列,在三维空间中这个数列有三个分量,也是上面说的由三个基向量线性组合成的向量。

坐标:也是数列,坐标没有单独的定义,不能脱离坐标系和向量单独存在,也就是先有坐标系和向量才有坐标这一概念。

坐标只能说是某个坐标系下面某个向量的坐标,向量的坐标值等于三个基向量线性表示的表示系数,也就是基向量线性组合成的该向量的组合系数。

用矩阵乘法可以表示三者关系:

基向量组成的矩阵*坐标值=向量

坐标系*向量的坐标=向量 即:

矩阵*向量的坐标=向量

向量的坐标 = 矩阵的逆矩阵*向量

预备知识:

矩阵乘以向量可以表示成该矩阵列向量的线性组合,被乘向量的三个分量是三个组合系数。也可以表示为矩阵行向量与被成向量的点积

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值