面试官提问:Cross Attention 和 Self Attention 主要的区别是什么?
参考回答:
Cross Attention(交叉注意力)和 Self Attention(自注意力)是注意力机制中的两种不同类型,它们在信息交互的方式上有显著的区别。具体来说,主要区别体现在输入的来源和信息交互的对象上。
1. Self Attention(自注意力)的定义与特点
Self Attention 是 Transformer 架构中的核心机制,主要用于捕捉同一序列内部各个位置之间的依赖关系。
-
工作原理:在 Self Attention 中,输入序列中的每个元素(例如单词或特征向量)与同一序列中的所有其他元素进行计算,从而建立各个位置之间的相关性。具体来说,每个元素生成查询(Query)、键(Key)和值(Value)向量,通过计算 Query 和 Key 之间的点积,得到注意力权重,然后用这些权重对所有位置的 Value 进行加权求和,生成当前位置的上下文向量。
-
作用:它能够让模型关注到输入序列中不同位置的信息,并捕捉全局的依赖关系。比如在 NLP 任务中,一个单词可以通过 Self Attention 建立与其他单词的关联,从而了解上下文。
-
主要特点:
- 信息来源:单一序列内部,即查询、键和值均来自同一输入序列。
- 应用场景:适用于序列中各个位置之间的自我依赖建模,如 NLP 中的句子编码、图像处理中的自相关特征提取。
2. Cross Attention(交叉注意力)的定义与特点
Cross Attention 则涉及两个不同序列之间的信息交互,它广泛用于多模态任务或需要对不同数据源进行交互的场景中,比如在序列到序列模型(Seq2Seq)中或图像和文本之间的信息对齐中。
-
工作原理:在 Cross Attention 中,查询(Query)来自一个序列,而键(Key)和值(Value)来自另一个不同的序列。这种机制允许模型将一个序列中的信息与另一个序列中的信息进行匹配和关联,从而在两个不同的表示之间建立相关性。
-
作用:Cross Attention 主要用于跨模态、跨序列的依赖关系建模。例如,在图像和文本匹配任务中,文本的查询可以与图像中的特征进行匹配,从而找到相关的图像区域。
-
主要特点:
- 信息来源:两个不同序列之间的信息交互,查询来自一个序列,而键和值来自另一个序列。
- 应用场景:广泛用于需要跨序列依赖的任务,例如在 Transformer 解码器中,通过 Cross Attention 机制,解码器的查询会与编码器生成的隐藏状态(作为键和值)进行交互,从而解码生成下一个词语。
3. Self Attention 和 Cross Attention 的对比
维度 | Self Attention | Cross Attention |
---|---|---|
输入来源 | 同一序列内的元素(Query、Key、Value) | 不同序列中的元素(Query、Key、Value 不同来源) |
信息交互对象 | 序列中的各个元素相互关注 | 序列 A 的元素关注序列 B 中的元素 |
应用场景 | 序列内部依赖建模,如句子中的词与词的关联 | 跨序列信息建模,如文本到图像、编码器到解码器 |
特征捕捉 | 捕捉序列内部的全局依赖 | 捕捉不同序列之间的全局依赖 |
4. Self Attention 与 Cross Attention 的应用
-
Self Attention 应用:主要在 Transformer 编码器中用于对输入序列的各个位置进行全局依赖建模。比如在 NLP 模型中,每个单词可以通过 Self Attention 了解句子中所有其他单词的上下文信息。
-
Cross Attention 应用:典型场景是在 Transformer 解码器中,生成当前词时,解码器会通过 Cross Attention 关注编码器中隐藏状态的信息,帮助解码器更好地生成下一个词。此外,Cross Attention 也常见于多模态任务中,比如图像-文本匹配、图像描述生成等。
5. 总结
总结来说,Self Attention 主要用于序列内部各个位置的交互,帮助模型捕捉序列内部的全局信息,而 Cross Attention 则用于跨序列或跨模态的信息交互,帮助模型建立不同数据源之间的依赖关系。二者共同作用,帮助 Transformer 架构在处理各种复杂任务时实现强大的表示能力。