什么是多头注意力机制?

多头注意力

多头注意力(Multi-Head Attention)是深度学习模型,尤其是变换器(Transformer)架构中的一个重要机制。它的主要目的是在处理序列数据时捕捉不同的语义特征。以下是多头注意力的简要过程:

  1. 线性变换

    • 输入的序列经过三个不同的线性变换,生成查询(Query)、键(Key)和值(Value)矩阵。这些变换通常是通过全连接层实现的。
  2. 分头

    • 将查询、键和值矩阵分成多个头(即多个子空间),每个头具有不同的线性变换参数。每个头都将独立地进行注意力计算,从而可以捕捉序列中的不同特征。
  3. 计算注意力权重

    • 对每个头,使用标准的注意力机制计算注意力权重。具体来说,对每个头,计算查询和键的点积,经过缩放、加上偏置后,使用 softmax 函数得到注意力权重。这些权重用于加权值矩阵,生成加权和作为每个头的输出。
  4. 拼接头的输出

    • 将每个头的输出拼接在一起,形成一个长向量。
  5. 线性变换

    • 对拼接后的向量进行一个最终的线性变换,以整合来自不同头的信息,得到最终的多头注意力输出。
  6. 后续处理

    • 这个最终的输出可以被送入到后续的网络层,如前馈神经网络,进行进一步处理。

怎么分头?

在多头注意力机制中,分头的过程是通过将输入的查询(Q)、键(K)、值(V)矩阵分成多个头(即多个子空间)来实现的。假如给定的输入维度(比如 (120, 640)),分头的步骤可以详细解释如下:

假设条件

  • 输入矩阵的维度是 (120, 640),这里 120 是序列长度(例如词汇的数量),640 是每个词的特征维度。
  • 假设我们将特征维度 640 分成 h 个头,每个头的维度为 d_k。通常情况下,d_k = 640 / h,即每个头的特征维度是 640 除以头的数量 h

分头过程

  1. 选择头的数量 h
    选择一个头的数量 h,这通常是一个超参数。比如,设定 h = 8(即有8个头)。

  2. 线性变换
    对输入的查询(Q)、键(K)和值(V)矩阵应用线性变换。假设原始的输入矩阵的维度为 (120, 640),经过线性变换后,你会得到三个矩阵:Q'K'V',每个矩阵的维度都是 (120, 640)

  3. 分头
    Q'K'V' 分成 h 个头。假设每个头的维度是 d_k,则 d_k = 640 / h。对于 h = 8,每个头的维度是 640 / 8 = 80

    • Q'K'V' 按照最后一维(特征维度)分成 h 个子矩阵,每个子矩阵的维度为 (120, 80)。总的维度保持不变,但每个子矩阵的维度现在是 80
  4. 应用注意力机制
    对于每个头,应用自注意力机制来计算注意力权重。对于每个头,得到的注意力输出的维度是 (120, 80)

  5. 拼接输出
    将所有头的输出(每个头的输出维度是 (120, 80))沿最后一个维度拼接,得到一个合并后的矩阵,维度是 (120, 640)(因为 80 * 8 = 640)。

  6. 最终线性变换
    对拼接后的矩阵应用一个线性变换,得到最终的多头注意力输出,维度仍然是 (120, 640)

总结

在多头注意力机制中,通过将输入特征维度分成多个头,每个头独立进行注意力计算,然后拼接所有头的输出,能够使模型学习到序列数据中的不同特征。通过这种方式,模型可以从多个角度捕捉信息,从而提升性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值