多头注意力
多头注意力(Multi-Head Attention)是深度学习模型,尤其是变换器(Transformer)架构中的一个重要机制。它的主要目的是在处理序列数据时捕捉不同的语义特征。以下是多头注意力的简要过程:
-
线性变换:
- 输入的序列经过三个不同的线性变换,生成查询(Query)、键(Key)和值(Value)矩阵。这些变换通常是通过全连接层实现的。
-
分头:
- 将查询、键和值矩阵分成多个头(即多个子空间),每个头具有不同的线性变换参数。每个头都将独立地进行注意力计算,从而可以捕捉序列中的不同特征。
-
计算注意力权重:
- 对每个头,使用标准的注意力机制计算注意力权重。具体来说,对每个头,计算查询和键的点积,经过缩放、加上偏置后,使用 softmax 函数得到注意力权重。这些权重用于加权值矩阵,生成加权和作为每个头的输出。
-
拼接头的输出:
- 将每个头的输出拼接在一起,形成一个长向量。
-
线性变换:
- 对拼接后的向量进行一个最终的线性变换,以整合来自不同头的信息,得到最终的多头注意力输出。
-
后续处理:
- 这个最终的输出可以被送入到后续的网络层,如前馈神经网络,进行进一步处理。
怎么分头?
在多头注意力机制中,分头的过程是通过将输入的查询(Q)、键(K)、值(V)矩阵分成多个头(即多个子空间)来实现的。假如给定的输入维度(比如 (120, 640)
),分头的步骤可以详细解释如下:
假设条件
- 输入矩阵的维度是
(120, 640)
,这里120
是序列长度(例如词汇的数量),640
是每个词的特征维度。 - 假设我们将特征维度
640
分成h
个头,每个头的维度为d_k
。通常情况下,d_k = 640 / h
,即每个头的特征维度是640
除以头的数量h
。
分头过程
-
选择头的数量
h
:
选择一个头的数量h
,这通常是一个超参数。比如,设定h = 8
(即有8个头)。 -
线性变换:
对输入的查询(Q)、键(K)和值(V)矩阵应用线性变换。假设原始的输入矩阵的维度为(120, 640)
,经过线性变换后,你会得到三个矩阵:Q'
、K'
和V'
,每个矩阵的维度都是(120, 640)
。 -
分头:
将Q'
、K'
和V'
分成h
个头。假设每个头的维度是d_k
,则d_k = 640 / h
。对于h = 8
,每个头的维度是640 / 8 = 80
。- 将
Q'
、K'
和V'
按照最后一维(特征维度)分成h
个子矩阵,每个子矩阵的维度为(120, 80)
。总的维度保持不变,但每个子矩阵的维度现在是80
。
- 将
-
应用注意力机制:
对于每个头,应用自注意力机制来计算注意力权重。对于每个头,得到的注意力输出的维度是(120, 80)
。 -
拼接输出:
将所有头的输出(每个头的输出维度是(120, 80)
)沿最后一个维度拼接,得到一个合并后的矩阵,维度是(120, 640)
(因为80 * 8 = 640
)。 -
最终线性变换:
对拼接后的矩阵应用一个线性变换,得到最终的多头注意力输出,维度仍然是(120, 640)
。
总结
在多头注意力机制中,通过将输入特征维度分成多个头,每个头独立进行注意力计算,然后拼接所有头的输出,能够使模型学习到序列数据中的不同特征。通过这种方式,模型可以从多个角度捕捉信息,从而提升性能。