把变量放入显存
你可以使用data.cuda()
或者 data.to(device)
等命令来把变量放入显存。
这时你的变量占用了显存。如果大量变量占用显存而不清理,显存将会超出限制使得程序结束。
尽管Torch官方提供了自动的显存管理,但是他们并不是都管用,否在我的显存也不是老是爆掉了。这篇博文也不需要写了。
手动释放单个变量
很多教程说torch.cuda.empty_cache()
可以用来清理显存,然而只是执行它并没有用。
我们需要将变量删除再清理,这时候才是有用的。
data=copy.deepcopy(train_data[idx])
data=data.cuda()
del data
torch.cuda.empty_cache()
释放列表
index=0
data_list=[]
for idx in range(len(train_data)):
data=copy.deepcopy(train_data[idx])
data=data.cuda()
data_list.append(data)
if len(data_list)==1000:
break
while len(data_list)!=0:
del data_list[-1]
torch.cuda.empty_cache()