多头注意力机制(multi-head attentions)中k、v的多头数可以和q不同

头的数量不一致的原因

  1. 模型复杂性和计算资源

    • 查询(query)的头数多,表示模型可以捕获更多的上下文信息和关系,从而提高模型的表达能力。
    • 键(key)和值(value)的头数少,可以减少计算量和内存占用,从而提高计算效率和减少资源消耗。
  2. 灵活性和控制

    • 通过设置不同的查询和键/值头数,可以灵活地控制模型的复杂性和计算负载。特别是在大模型中,不同的任务可能需要不同的注意力分配。
  3. 架构设计

    • 在一些特定的架构设计中,查询头数的增加可以提高模型的表现力,而键/值头数的减少可以保持模型的计算和存储成本在合理范围内。

实现细节

self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        self.n_local_heads = args.n_heads // model_parallel_size
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads  
        #键/值头的数量小于查询头的数量时重复键/值头
        self.head_dim = args.dim // args.n_heads

        self.n_rep 是查询头相对于键/值头的重复次数,用于在前向传播中重复键和值,以匹配查询头的数量。

计算中的重复操作

在前向传播中,通过以下函数来重复键和值的头:

def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: 
    bs, slen, n_kv_heads, head_dim = x.shape 
    if n_rep == 1: 
        return x 
    else:
        return ( x[:, :, :, None, :] .expand(bs, slen, n_kv_heads, n_rep, head_dim)       
                    .reshape(bs, slen, n_kv_heads * n_rep, head_dim) )

该函数将键和值的头通过 expandreshape 操作重复,以匹配查询头的数量。

实例中的应用

Attention 类的 forward 方法中,键和值通过 repeat_kv 函数进行重复:

keys = repeat_kv(keys, self.n_rep) values = repeat_kv(values, self.n_rep)

这确保了查询、键和值在计算注意力权重时具有相同的头数,从而可以进行矩阵乘法计算。

总结

通过允许查询和键/值具有不同的头数,模型可以在不显著增加计算和存储成本的情况下,提高其表示能力和灵活性。这种设计在大型模型和资源受限的情况下特别有用。

多头注意力机制是用于处理序列数据的一种强大的工具,但是它也可以扩展到处理图像数据。在自注意力机制,每个单词都被表示为一个向量,这个向量是由所有其他单词的向量的加权平均值来计算的。在图像数据,我们可以将每个像素表示为一个向量,并将它们视为序列数据,然后使用多头注意力机制来处理它们。下面是一个使用PyTorch实现多头注意力机制处理图像数据的例子: ```python import torch import torch.nn as nn class MultiHeadAttention(nn.Module): def __init__(self, n_heads, n_features): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.n_features = n_features # define linear layers for Q, K, V inputs self.q_linear = nn.Linear(n_features, n_features) self.v_linear = nn.Linear(n_features, n_features) self.k_linear = nn.Linear(n_features, n_features) # define an output linear layer self.out = nn.Linear(n_features, n_features) def attention(self, q, k, v, d_k, mask=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1e9) attention = nn.Softmax(dim=-1)(scores) output = torch.matmul(attention, v) return output, attention def forward(self, x, mask=None): n_batch, n_pixels, n_features = x.shape q = self.q_linear(x).view(n_batch, n_pixels, self.n_heads, self.n_features // self.n_heads).transpose(1, 2) k = self.k_linear(x).view(n_batch, n_pixels, self.n_heads, self.n_features // self.n_heads).transpose(1, 2) v = self.v_linear(x).view(n_batch, n_pixels, self.n_heads, self.n_features // self.n_heads).transpose(1, 2) outputs, attentions = self.attention(q, k, v, self.n_features // self.n_heads, mask=mask) concat_outputs = outputs.transpose(1, 2).contiguous().view(n_batch, n_pixels, self.n_features) output = self.out(concat_outputs) return output, attentions ``` 在这个实现,我们首先定义了一个`MultiHeadAttention`类,该类接受两个参数:`n_heads`和`n_features`。`n_heads`表示我们要将输入向量分成多少个头,`n_features`表示每个向量的特征数。然后我们定义了三个线性层,分别用于计算Q,K和V输入。我们也定义了一个输出线性层。在`forward`方法,我们首先将输入x通过Q,K和V线性层,然后将它们分别转置到头的维度上。然后我们使用`attention`函数计算输出和注意力权重。最后我们将输出拼接在一起,并通过输出线性层输出。如果提供了一个掩码,我们将使用它来屏蔽不应该在注意力计算使用的像素。 这是一个简单的实现,但它可以处理图像数据并从提取有用的特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值