在高通平台的cpu/gpu/dsp/npu上运行神经网络模型

本文介绍了高通提供的Snapdragon Neural Processing Engine (SNPE) SDK,用于在高通CPU、GPU和DSP上运行神经网络模型。通过SNPE,开发者可以将Caffe、TensorFlow等平台的模型转换为DLC格式,并进行量化、压缩操作,以充分利用硬件资源,提高执行效率。SNPE支持模型训练后的DLC文件转换,量化以及在不同计算核心上的执行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了能在高通的gpu/dsp上运行神经网络,高通提供了一套sdk:
https://developer.qualcomm.com/docs/snpe/overview.html
通过这套sdk,可以把caffe/tensorflow等平台的模型转成.dlc格式的离线模型,可选地,还可以对模型进行量化、压缩等操作。
通过这套sdk,可以轻松地在高通的gpu/dsp上运行神经网络,充分利用硬件资源。

SNPE简介:

Purpose

本文档提供了SnapdragonTM神经处理引擎(SNPE)软件开发工具包(SDK)用户指南和API参考指南。

Capabilities

Snapdragon神经处理引擎(SNPE)是用于执行深度神经网络的Qualcomm Snapdragon软件加速运行时。 使用SNPE,用户可以:

执行任意深度的神经网络

在SnapdragonTM CPU,AdrenoTM GPU或HexagonTM DSP上执行网络。
在x86 Ubuntu Linux上调试网络执行
将Caffe,Caffe2,ONNXTM和TensorFlowTM模型转换为SNPE深度学习容器(DLC)文件
将DLC文件量化为8位定点,以便在Hexagon DSP上运行
使用SNPE工具调试和分析网络性能
通过C ++或Java将网络集成到应用程序和其他代码中

### 如何在NPU上部署和运行ONNX模型 #### 准备工作 对于要在NPU神经网络处理单元)上部署和运行ONNX模型,首先需要准备支持该功能的开发环境。ARM NN SDK能够加载由TensorFlow Lite或其他框架生成的模型,并针对特定硬件进行优化[^1]。 #### 加载与验证ONNX模型 要确保ONNX模型正确无误,在将其用于任何进一步的操作之前应该先对其进行验证。这可以通过Python中的`onnx`库来完成: ```python import onnx # 读取 ONNX 模型 onnx_model = onnx.load('resNet34.onnx') # 检查模型格式是否正确 onnx.checker.check_model(onnx_model) print('Model verified successfully') ``` 此过程有助于确认所使用的ONNX文件结构有效且符合预期标准[^2]。 #### 将ONNX模型转换为适配NPU的目标格式 不同厂商提供的工具链可能有所不同;例如,高通提供了SNPE SDK,它允许开发者将来自多个源(如Caffe或TensorFlow)的模型转化为`.dlc`格式以便于在其GPU/DSP设备上的执行[^3]。然而,当目标是通用类型的NPU时,则应考虑使用像ARM NN这样的解决方案来进行必要的转换和优化操作。 #### 编译优化后的模型NPU使用 一旦选择了合适的SDK之后,下一步就是利用其内置的功能对导入的模型实施编译以及性能调整措施。这些步骤通常涉及但不限于量化、剪枝等技术手段以适应具体硬件特性并提高效率。对于ARM架构下的NPUs来说,这意味着创建一个经过特别定制化处理版本的原始ONNX模型,使其能更好地发挥ARM内核的优势。 #### 运行推理计算 最后一步是在实际环境中测试已编译好的模型能否正常运作。如果一切顺利的话,现在就可以通过调用相应API接口传入输入数据从而获得预测输出了。值得注意的是,某些情况下还需要额外编写一些辅助脚本来帮助完成整个流程自动化管理任务[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值