FastDeploy面向AI模型产业落地,帮助开发者简单几步即可完成AI模型在对应硬件上的部署,降低部署难度、压缩部署时间成本。支持40多个主流的AI模型在8大类常见硬件上的部署能力。
本文给大家分享如何快速搭建FastDeploy环境,并部署推理模型。
准确工作
请先使用miniConda创建一个python 3.10的环境,并将其命名为 fastdeploy
接下来的环节都基于此条件下说明。
PaddleX3安装教程-CSDN博客文章浏览阅读319次,点赞8次,收藏9次。百度飞浆AI一站式工具最新版PaddleX3的详细安装教程,根据以下步骤,可以帮助大家避坑,且一次性安装成功,助力大家将复杂的AI环境搭建标准化、流程化、简单化。原来AI开发可以如此简单。话不多说,直接上干货。
https://blog.csdn.net/li277967151/article/details/140655249注:不会使用conda搭建环境的同学,请参考这篇文章,有详细介绍。
下载FastDeploy whl安装包
FastDeply各平台官方下载链接
https://www.paddlepaddle.org.cn/whl/fastdeploy.html
请大家根据自己的实际软硬件配置情况,下载对应的whl包版本,如GPU版本、CPU版本等。
有几点说明一下:
- whl安装包文件的命名规范&