Generalized Focal Loss

本文探讨了Generalized Focal Loss在解决目标检测任务中的classification与localization不连续性和边界表示灵活性问题。通过QFL和DFL损失函数,实现了更连续的训练与测试过程,并对任意分布进行灵活预测,提高了检测性能。
摘要由CSDN通过智能技术生成

Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

https://arxiv.org/abs/2006.04388

Background

one-stage的目标检测任务一般将任务划分为两个方向:classification和localization,在网络训练过程中,这两个方向一般是独立进行优化的,如下图所示。

图1 传统detection任务学习范式

其中,对于classification问题,考虑到目标检测任务中大量背景负样本到影响,一般选用Focal Loss来进行优化。而对于localization问题,一般都是将其作为一个Dirac delta分布问题,通过对GT的box的回归来优化。而最近FCOS提出引入一个定位质量评估的因子localizaiton quality(一般采用 IoU或centerness score),带来了很可观的性能提升。目前来说,这三者的组合便是目前目标检测任务的常用较优组合。

Issue

但是通过对该三者组合的训练范式的研究,作者发现其中存在两个问题:

  • classif

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值