分类问题的误差函数

二分类问题

从特征 features 到目标 target 的预测,由于每个特征对结果的影响程度不同,所以给每个特征 feature 配备一个权重系数 weight,为了修正整体偏差,可以给最终结果配备一个偏差系数 bias,于是有 w x + b wx + b wx+b。对于分类问题,我们将上述结果再经过一个 sigmoid 函数,于是有 σ ( w x + b ) \sigma(wx + b) σ(wx+b),这便是我们对于分类问题的预测结果,表示 target 为某个分类的概率,这里出现了概率一词,于是我们可以考虑使用概率论的一些工具和方法。假设 y ^ = σ ( w x + b ) \hat{y} = \sigma(wx + b) y^=σ(wx+b)表示预测为正的概率,那么预测为反的概率为 1 − y ^ 1-\hat{y} 1y^,如下表所示:

事件概率
y ^ \hat{y} y^
1 − y ^ 1-\hat{y} 1y^

假设实际结果为:正、正、反、正、反、反、正,因为是独立事件,所以他们同时发生的概率为:
P = y ^ ∗ y ^ ∗ ( 1 − y ^ ) ∗ y ^ ∗ ( 1 − y ^ ) ∗ ( 1 − y ^ ) ∗ y ^ P = \hat{y}*\hat{y}*(1-\hat{y})*\hat{y}*(1-\hat{y})*(1-\hat{y})*\hat{y} P=y^y^(1y^)y^(1y^)(1y^)y^

根据最大似然估计的目标1,我们需要最大化 P P P。由于乘法优化起来比较麻烦,所以我们可以转化为等效的加法运算,我们取对数后得到:
ln ⁡ ( P ) = ln ⁡ ( y ^ ) + ln ⁡ ( y ^ ) + ln ⁡ ( 1 − y ^ ) + ln ⁡ ( y ^ ) + ln ⁡ ( 1 − y ^ ) + ln ⁡ ( 1 − y ^ ) + ln ⁡ ( y ^ ) \ln(P) = \ln(\hat{y}) + \ln(\hat{y}) + \ln(1-\hat{y}) + \ln(\hat{y}) + \ln(1-\hat{y}) + \ln(1-\hat{y}) + \ln(\hat{y}) ln(P)=ln(y^)+ln(y^)+ln(1y^)+ln(y^)+ln(1y^)+ln(1y^)+ln(y^)
由于 0 &lt; y ^ &lt; 1 0&lt;\hat{y} &lt; 1 0<y^<1,所以 − ∞ &lt; ln ⁡ ( y ^ ) &lt; 0 -\infty&lt;\ln(\hat{y}) &lt; 0 <ln(y^)<0,不利于计算求和,于是我们取 ln ⁡ ( y ^ ) \ln(\hat{y}) ln(y^) 的相反数:
L o s s = − ln ⁡ ( P ) = − ln ⁡ ( y ^ ) − ln ⁡ ( y ^ ) − ln ⁡ ( 1 − y ^ ) − ln ⁡ ( y ^ ) − ln ⁡ ( 1 − y ^ ) − ln ⁡ ( 1 − y ^ ) − ln ⁡ ( y ^ ) Loss = -\ln(P) = -\ln(\hat{y}) - \ln(\hat{y}) - \ln(1-\hat{y}) - \ln(\hat{y}) - \ln(1-\hat{y}) - \ln(1-\hat{y}) - \ln(\hat{y}) Loss=ln(P)=ln(y^)ln(y^)ln(1y^)ln(y^)ln(1y^)ln(1y^)ln(y^)
现在的目标变成最小化 L o s s Loss Loss


  1. https://blog.csdn.net/qq_39355550/article/details/81809467 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值