Windows环境下配置深度强化学习环境玩Atari游戏

Windows下配置深度强化学习Atari环境(gym)

1.在anaconda命令行下创建新的环境

conda create -n 环境名 python=3.8.5  #可以定义自己的环境名

2.激活环境

activate 环境名

补充:

如果需要cuda加速需要安装cuda和cudnn
安装cuda:
查看自己电脑的显卡版本,去https://developer.nvidia.com/cuda-toolkit-archive网站找到自己显卡对应的cuda版本下载,
下载完成后安装在默认路径下(否则安装完成后会看不到自己设置的文件夹)
Win+R,输入cmd.打开命令行,输入nvcc -V 出现版本号则安装成功
安装cudnn:
进官网https://developer.nvidia.com/rdp/cudnn-download,依据cuda版本选择相应cuDNN版本
下载完成后是一个压缩包,将其解压缩后的三个文件夹复制到cuda安装路径上
Win+R,输入cmd.打开命令行,输入nvidia-smi 成功输出则安装成功


3.安装tensorflow环境

conda install -c anaconda tensorflow-gpu

根据自己的需要安装GPU或者CPU版本

4.安装keras

conda install -c anaconda keras-gpu

根据自己的需要安装GPU或者CPU版本

5.安装pytorch

这里最好能够去pytorch官网(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

libenfan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值