Q:To give integer solutions of a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2
solution:
We get : ( a c ) 2 + ( b c ) 2 = 1 (\frac{a}{c})^2+(\frac{b}{c})^2=1 (ca)2+(cb)2=1
let: a c = x \frac{a}{c}=x ca=x b c = y \frac{b}{c}=y cb=y
then: just to find Rational number soluntion of x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1
Here we can fit it in a standard circle:
Then to solve: { x 2 + y 2 = 1 y = k ( x − 1 ) \begin{cases} x^2+y^2=1 \\ y=k(x-1) \end{cases} {x2+y2=1y=k(x−1)
At last we could solve the result rational number solutions