最大回撤线性算法实现

最大回撤是指投资组合在选定的周期内,任一时间点往后推,可能出现资产净值下降的最大幅度。回撤的意思是指在某一段时期内净值从最高点开始回落到最低点的幅度。最大回撤常用百分率来表示,是一个重要的风险指标。最大回撤的计算公式为

最 大 回 撤 = ( 波 峰 值 − 波 谷 值 ) / 波 峰 值 最大回撤 = \left( 波峰值 - 波谷值 \right) / 波峰值 =()/

注意这里的 波 峰 值 波峰值 波 谷 值 波谷值 并不一定是最高值与最低值,这里的 波 峰 值 波峰值 波 谷 值 波谷值 要与时间范围内关联起来。

另外,值得指出的是,最大回撤只是描述投资组合资产净值下降的最大幅度,但它并没有描述投资组合需要使用多长时间恢复下降的资产净值。

本文讲述如何使用 Python 科学计算包 numpy 来计算最大回撤。

为方便描述算法,我们简化最大回撤的定义,只考虑净值下降值,不采用百分率来表示下降幅度,即对于序列 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn,定义最大回撤 d d d

d = max ⁡ i ⩽ j ( x i − x j ) d = \max \limits_{i\leqslant j} \left( x_i - x_j \right) d=ijmax(xixj)

如果需要改用百分率来表示最大回撤,只需要再除以 x i x_i x

要使用机器学习算法实现自动化交易策略,首先需要了解交易数据的收集、处理和特征工程的重要性。推荐参考《Hands-On Machine Learning for Algorithmic Trading 最新版》一书,该书将引导你了解从数据预处理到模型选择和策略部署的全过程。 参考资源链接:[Hands-On Machine Learning for Algorithmic Trading 最新版](https://wenku.csdn.net/doc/64658957543f844488aa7f60?spm=1055.2569.3001.10343) 实际操作中,可以分为以下步骤: 1. 数据收集:首先,需要从金融市场收集历史交易数据,包括股票价格、交易量等。 2. 数据预处理:清洗数据,处理缺失值和异常值,进行归一化或标准化等。 3. 特征工程:依据领域知识,提取有用的信息作为模型的输入特征,如技术指标、价格变动比率等。 4. 模型选择:基于数据的特点选择合适的机器学习模型,常见的有线性归、随机森林、支持向量机、神经网络等。 5. 训练模型:使用历史数据训练选定的机器学习模型,并进行交叉验证,优化模型参数。 6. 策略制定:根据模型预结果和风险控制标准制定交易策略,例如根据预涨跌来决定买入或卖出。 7. :使用历史数据试交易策略的效果,确保策略在过去的市场环境中具有稳定性和盈利性。 8. 前向试:在实盘交易环境中试策略,监控模型表现,及时调整策略参数。 9. 部署:将经过验证的模型和策略部署到生产环境中,实现自动化的实时交易。 例如,我们可以采用随机森林模型来预股票价格的涨跌,并据此进行交易决策。通过对模型的输出进行阈值判断,决定买入或卖出的时机。阶段将显示模型在历史数据上的表现,包括策略的收益率、最大回撤等关键指标。 在掌握如何应用机器学习算法实现自动化交易策略后,进一步深入学习模型的优化和策略的完善是十分必要的。为了达到这一目标,建议继续研读《Hands-On Machine Learning for Algorithmic Trading 最新版》,其中不仅介绍了基础知识和实战案例,还探讨了如何对策略进行评估和改进。 参考资源链接:[Hands-On Machine Learning for Algorithmic Trading 最新版](https://wenku.csdn.net/doc/64658957543f844488aa7f60?spm=1055.2569.3001.10343)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值